/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "sd.h" #include "sdmmc.h" #include "ssp-imx233.h" #include "pinctrl-imx233.h" #include "partitions-imx233.h" #include "button-target.h" #include "fat.h" #include "disk.h" #include "usb.h" #include "debug.h" struct sd_config_t { const char *name; /* name(for debug) */ int flags; /* flags */ int power_pin; /* power pin */ int power_delay; /* extra power up delay */ int ssp; /* associated ssp block */ }; /* flags */ #define POWER_PIN (1 << 0) #define POWER_INVERTED (1 << 1) #define REMOVABLE (1 << 2) #define DETECT_INVERTED (1 << 3) #define POWER_DELAY (1 << 4) #define WINDOW (1 << 5) #define PIN(bank,pin) ((bank) << 5 | (pin)) #define PIN2BANK(v) ((v) >> 5) #define PIN2PIN(v) ((v) & 0x1f) struct sd_config_t sd_config[] = { #ifdef SANSA_FUZEPLUS /* The Fuze+ uses pin #B0P8 for power */ { .name = "microSD", .flags = POWER_PIN | POWER_INVERTED | REMOVABLE, .power_pin = PIN(0, 8), .ssp = 1 }, #elif defined(CREATIVE_ZENXFI2) /* The Zen X-Fi2 uses pin B1P29 for power*/ { .name = "microSD", .flags = POWER_PIN | REMOVABLE | DETECT_INVERTED, .power_pin = PIN(1, 29), .ssp = 1, }, #elif defined(CREATIVE_ZENXFI3) { .name = "internal/SD", .flags = WINDOW, .ssp = 2 }, /* The Zen X-Fi3 uses pin #B0P07 for power*/ { .name = "microSD", .flags = POWER_PIN | POWER_INVERTED | REMOVABLE | POWER_DELAY, .power_pin = PIN(0, 7), .power_delay = HZ / 10, /* extra delay, to ramp up voltage? */ .ssp = 1 }, #else #error You need to write the sd config! #endif }; #define SD_NUM_DRIVES (sizeof(sd_config) / sizeof(sd_config[0])) #define SD_CONF(drive) sd_config[drive] #define SD_FLAGS(drive) SD_CONF(drive).flags #define SD_SSP(drive) SD_CONF(drive).ssp #define IF_FIRST_DRIVE(drive) if((drive) == 0) #define IF_SECOND_DRIVE(drive) if((drive) == 1) static tCardInfo card_info[SD_NUM_DRIVES]; static long sd_stack[(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)]; static struct mutex sd_mutex; static const char sd_thread_name[] = "sd"; static struct event_queue sd_queue; static int sd_first_drive; static int last_disk_activity; static unsigned sd_window_start[SD_NUM_DRIVES]; static unsigned sd_window_end[SD_NUM_DRIVES]; static void sd_detect_callback(int ssp) { /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ if(imx233_ssp_sdmmc_detect(ssp)) queue_broadcast(SYS_HOTSWAP_INSERTED, 0); else queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); imx233_ssp_sdmmc_setup_detect(ssp, true, sd_detect_callback, false, imx233_ssp_sdmmc_is_detect_inverted(ssp)); } void sd_power(int drive, bool on) { /* power chip if needed */ if(SD_FLAGS(drive) & POWER_PIN) { int bank = PIN2BANK(SD_CONF(drive).power_pin); int pin = PIN2PIN(SD_CONF(drive).power_pin); imx233_pinctrl_acquire_pin(bank, pin, "sd power"); imx233_set_pin_function(bank, pin, PINCTRL_FUNCTION_GPIO); imx233_enable_gpio_output(bank, pin, true); if(SD_FLAGS(drive) & POWER_INVERTED) imx233_set_gpio_output(bank, pin, !on); else imx233_set_gpio_output(bank, pin, on); } if(SD_FLAGS(drive) & POWER_DELAY) sleep(SD_CONF(drive).power_delay); /* setup pins, never use alternatives pin on SSP1 because these are force * bus width >= 4 and SD cannot use more than 4 data lines. */ if(SD_SSP(drive) == 1) imx233_ssp_setup_ssp1_sd_mmc_pins(on, 4, PINCTRL_DRIVE_4mA, false); else imx233_ssp_setup_ssp2_sd_mmc_pins(on, 4, PINCTRL_DRIVE_4mA); } void sd_enable(bool on) { (void) on; } #define MCI_NO_RESP 0 #define MCI_RESP (1<<0) #define MCI_LONG_RESP (1<<1) #define MCI_ACMD (1<<2) #define MCI_NOCRC (1<<3) #define MCI_BUSY (1<<4) static bool send_cmd(int drive, uint8_t cmd, uint32_t arg, uint32_t flags, uint32_t *resp) { if((flags & MCI_ACMD) && !send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_RESP, resp)) return false; enum imx233_ssp_resp_t resp_type = (flags & MCI_LONG_RESP) ? SSP_LONG_RESP : (flags & MCI_RESP) ? SSP_SHORT_RESP : SSP_NO_RESP; enum imx233_ssp_error_t ret = imx233_ssp_sd_mmc_transfer(SD_SSP(drive), cmd, arg, resp_type, NULL, 0, !!(flags & MCI_BUSY), false, resp); if(resp_type == SSP_LONG_RESP) { /* Our SD codes assume most significant word first, so reverse resp */ uint32_t tmp = resp[0]; resp[0] = resp[3]; resp[3] = tmp; tmp = resp[1]; resp[1] = resp[2]; resp[2] = tmp; } return ret == SSP_SUCCESS; } static int sd_wait_for_tran_state(int drive) { unsigned long response; unsigned int timeout = current_tick + 5*HZ; int cmd_retry = 10; while (1) { while(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MCI_RESP, &response) && cmd_retry > 0) cmd_retry--; if(cmd_retry <= 0) return -1; if(((response >> 9) & 0xf) == SD_TRAN) return 0; if(TIME_AFTER(current_tick, timeout)) return -10 * ((response >> 9) & 0xf); last_disk_activity = current_tick; } } static int sd_init_card(int drive) { /* sanity check against bad configuration of SD_NUM_DRIVES/NUM_DRIVES */ if((unsigned)drive >= SD_NUM_DRIVES) panicf("drive >= SD_NUM_DRIVES in sd_init_card!"); int ssp = SD_SSP(drive); sd_power(drive, false); sd_power(drive, true); imx233_ssp_start(ssp); imx233_ssp_softreset(ssp); imx233_ssp_set_mode(ssp, HW_SSP_CTRL1__SSP_MODE__SD_MMC); /* SSPCLK @ 96MHz * gives bitrate of 96000 / 240 / 1 = 400kHz */ imx233_ssp_set_timings(ssp, 240, 0, 0xffff); imx233_ssp_sd_mmc_power_up_sequence(ssp); imx233_ssp_set_bus_width(ssp, 1); imx233_ssp_set_block_size(ssp, 9); card_info[drive].rca = 0; bool sd_v2 = false; uint32_t resp; long init_timeout; /* go to idle state */ if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL)) return -1; /* CMD8 Check for v2 sd card. Must be sent before using ACMD41 Non v2 cards will not respond to this command */ if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &resp)) if((resp & 0xFFF) == 0x1AA) sd_v2 = true; /* timeout for initialization is 1sec, from SD Specification 2.00 */ init_timeout = current_tick + HZ; do { /* this timeout is the only valid error for this loop*/ if(TIME_AFTER(current_tick, init_timeout)) return -2; /* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */ if(!send_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)), MCI_ACMD|MCI_NOCRC|MCI_RESP, &card_info[drive].ocr)) return -100; } while(!(card_info[drive].ocr & (1<<31))); /* CMD2 send CID */ if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, card_info[drive].cid)) return -3; /* CMD3 send RCA */ if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info[drive].rca)) return -4; /* Try to switch V2 cards to HS timings, non HS seem to ignore this */ if(sd_v2) { /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, NULL)) return -5; if(sd_wait_for_tran_state(drive)) return -6; /* CMD6 */ if(!send_cmd(drive, SD_SWITCH_FUNC, 0x80fffff1, MCI_NO_RESP, NULL)) return -7; sleep(HZ/10); /* go back to STBY state so we can read csd */ /* CMD7 w/rca=0: Deselect card to put it in STBY state */ if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL)) return -8; } /* CMD9 send CSD */ if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca, MCI_RESP|MCI_LONG_RESP, card_info[drive].csd)) return -9; sd_parse_csd(&card_info[drive]); /* SSPCLK @ 96MHz * gives bitrate of 96 / 4 / 1 = 24MHz */ imx233_ssp_set_timings(ssp, 4, 0, 0xffff); /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &resp)) return -12; if(sd_wait_for_tran_state(drive) < 0) return -13; /* ACMD6: set bus width to 4-bit */ if(!send_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_RESP|MCI_ACMD, &resp)) return -15; /* ACMD42: disconnect the pull-up resistor on CD/DAT3 */ if(!send_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_RESP|MCI_ACMD, &resp)) return -17; /* Switch to 4-bit */ imx233_ssp_set_bus_width(ssp, 4); card_info[drive].initialized = 1; /* compute window */ sd_window_start[drive] = 0; sd_window_end[drive] = card_info[drive].numblocks; if((SD_FLAGS(drive) & WINDOW) && imx233_partitions_is_window_enabled()) { /* WARNING: sd_first_drive is not set at this point */ uint8_t mbr[512]; int ret = sd_read_sectors(IF_MD2(drive,) 0, 1, mbr); if(ret) panicf("Cannot read MBR: %d", ret); ret = imx233_partitions_compute_window(mbr, &sd_window_start[drive], &sd_window_end[drive]); if(ret) panicf("cannot compute partitions window: %d", ret); card_info[drive].numblocks = sd_window_end[drive] - sd_window_start[drive]; } return 0; } static void sd_thread(void) NORETURN_ATTR; static void sd_thread(void) { struct queue_event ev; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch(ev.id) { case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: { int microsd_init = 1; /* lock-out FAT activity first - * prevent deadlocking via disk_mount that * would cause a reverse-order attempt with * another thread */ fat_lock(); /* lock-out card activity - direct calls * into driver that bypass the fat cache */ mutex_lock(&sd_mutex); /* We now have exclusive control of fat cache and sd. * Release "by force", ensure file * descriptors aren't leaked and any busy * ones are invalid if mounting. */ for(unsigned drive = 0; drive < SD_NUM_DRIVES; drive++) { /* Skip non-removable drivers */ if(!sd_removable(drive)) continue; disk_unmount(sd_first_drive + drive); /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[drive].initialized = 0; if(ev.id == SYS_HOTSWAP_INSERTED) { microsd_init = sd_init_card(drive); if(microsd_init < 0) /* initialisation failed */ panicf("%s init failed : %d", SD_CONF(drive).name, microsd_init); microsd_init = disk_mount(sd_first_drive + drive); /* 0 if fail */ } /* * Mount succeeded, or this was an EXTRACTED event, * in both cases notify the system about the changed filesystems */ if(microsd_init) queue_broadcast(SYS_FS_CHANGED, 0); } /* Access is now safe */ mutex_unlock(&sd_mutex); fat_unlock(); break; } case SYS_TIMEOUT: if(!TIME_BEFORE(current_tick, last_disk_activity +3 * HZ)) sd_enable(false); break; case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; } } } int sd_init(void) { mutex_init(&sd_mutex); queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); for(unsigned drive = 0; drive < SD_NUM_DRIVES; drive++) { if(SD_FLAGS(drive) & REMOVABLE) imx233_ssp_sdmmc_setup_detect(SD_SSP(drive), true, sd_detect_callback, false, SD_FLAGS(drive) & DETECT_INVERTED); } return 0; } static int transfer_sectors(IF_MD2(int drive,) unsigned long start, int count, void *buf, bool read) { int ret = 0; uint32_t resp; last_disk_activity = current_tick; mutex_lock(&sd_mutex); if(card_info[drive].initialized <= 0) { ret = sd_init_card(drive); if(card_info[drive].initialized <= 0) goto Lend; } /* check window */ start += sd_window_start[drive]; if((start + count) >= sd_window_end[drive]) { ret = -201; goto Lend; } if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_NO_RESP, NULL)) { ret = -20; goto Lend; } ret = sd_wait_for_tran_state(drive); if(ret < 0) goto Ldeselect; while(count != 0) { int this_count = MIN(count, IMX233_MAX_SSP_XFER_SIZE / 512); /* Set bank_start to the correct unit (blocks or bytes) */ int bank_start = start; if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */ bank_start *= SD_BLOCK_SIZE; ret = imx233_ssp_sd_mmc_transfer(SD_SSP(drive), read ? SD_READ_MULTIPLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK, bank_start, SSP_SHORT_RESP, buf, this_count, false, read, &resp); if(ret != SSP_SUCCESS) break; if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP|MCI_BUSY, &resp)) { ret = -15; break; } count -= this_count; start += this_count; buf += this_count * 512; } Ldeselect: /* CMD7 w/rca =0 : deselects card & puts it in STBY state */ if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL)) ret = -23; Lend: mutex_unlock(&sd_mutex); return ret; } int sd_read_sectors(IF_MD2(int drive,) unsigned long start, int count, void* buf) { return transfer_sectors(IF_MD2(drive,) start, count, buf, true); } int sd_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf) { return transfer_sectors(IF_MD2(drive,) start, count, (void *)buf, false); } tCardInfo *card_get_info_target(int card_no) { return &card_info[card_no]; } int sd_num_drives(int first_drive) { sd_first_drive = first_drive; return SD_NUM_DRIVES; } bool sd_present(IF_MV_NONVOID(int drive)) { if(SD_FLAGS(drive) & REMOVABLE) return imx233_ssp_sdmmc_detect(SD_SSP(drive)); else return true; } bool sd_removable(IF_MV_NONVOID(int drive)) { return SD_FLAGS(drive) & REMOVABLE; } long sd_last_disk_activity(void) { return last_disk_activity; }