/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "mmc.h" #include "sdmmc.h" #include "storage.h" #include "ssp-imx233.h" #include "pinctrl-imx233.h" #include "partitions-imx233.h" /** * This code assumes a single eMMC internal flash */ #ifdef SANSA_FUZEPLUS #define MMC_SSP 2 #else #error You need to configure the ssp to use #endif #define MMC_RCA 1 /** When set, this values restrict the windows of the read and writes */ static unsigned mmc_window_start; static unsigned mmc_window_end; static bool mmc_window_enable = true; static long mmc_last_activity = -1; static bool mmc_is_active = false; static unsigned mmc_size = 0; static int mmc_first_drive = 0; static struct mutex mmc_mutex; void imx233_mmc_disable_window(void) { mmc_window_enable = false; } int mmc_init(void) { mutex_init(&mmc_mutex); imx233_ssp_start(MMC_SSP); imx233_ssp_softreset(MMC_SSP); imx233_ssp_set_mode(MMC_SSP, HW_SSP_CTRL1__SSP_MODE__SD_MMC); #ifdef SANSA_FUZEPLUS /** Sansa Fuze+ has an internal eMMC 8-bit wide flash, power gate is pin PWM3 * and power up time is 20ms */ imx233_pinctrl_acquire_pin(1, 29, "emmc power"); imx233_set_pin_function(1, 29, PINCTRL_FUNCTION_GPIO); imx233_enable_gpio_output(1, 29, true); imx233_set_gpio_output(1, 29, false); sleep(HZ / 5); imx233_ssp_setup_ssp2_sd_mmc_pins(true, 8, PINCTRL_DRIVE_8mA); #endif /* SSPCLK @ 96MHz * gives bitrate of 96000 / 240 / 1 = 400kHz */ imx233_ssp_set_timings(MMC_SSP, 240, 0, 0xffff); imx233_ssp_sd_mmc_power_up_sequence(MMC_SSP); imx233_ssp_set_bus_width(MMC_SSP, 1); imx233_ssp_set_block_size(MMC_SSP, 9); /* go to idle state */ int ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 0, 0, SSP_NO_RESP, NULL, 0, false, false, NULL); if(ret != 0) return -1; /* send op cond until the card respond with busy bit set; it must complete within 1sec */ unsigned timeout = current_tick + HZ; do { uint32_t ocr; ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 1, 0x40ff8000, SSP_SHORT_RESP, NULL, 0, false, false, &ocr); if(ret == 0 && ocr & (1 << 31)) break; }while(!TIME_AFTER(current_tick, timeout)); if(ret != 0) return -2; /* get CID */ uint32_t cid[4]; ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 2, 0, SSP_LONG_RESP, NULL, 0, false, false, cid); if(ret != 0) return -3; /* Set RCA */ uint32_t status; ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 3, MMC_RCA << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status); if(ret != 0) return -4; /* Select card */ ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 7, MMC_RCA << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status); if(ret != 0) return -5; /* Check TRAN state */ ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 13, MMC_RCA << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status); if(ret != 0) return -6; if(((status >> 9) & 0xf) != 4) return -7; /* Switch to 8-bit bus */ ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 6, 0x3b70200, SSP_SHORT_RESP, NULL, 0, true, false, &status); if(ret != 0) return -8; /* switch error ? */ if(status & 0x80) return -9; imx233_ssp_set_bus_width(MMC_SSP, 8); /* Switch to high speed mode */ ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 6, 0x3b90100, SSP_SHORT_RESP, NULL, 0, true, false, &status); if(ret != 0) return -10; /* switch error ?*/ if(status & 0x80) return -11; /* SSPCLK @ 96MHz * gives bitrate of 96 / 2 / 1 = 48MHz */ imx233_ssp_set_timings(MMC_SSP, 2, 0, 0xffff); /* read extended CSD */ { uint8_t ext_csd[512]; ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 8, 0, SSP_SHORT_RESP, ext_csd, 1, true, true, &status); if(ret != 0) return -12; uint32_t *sec_count = (void *)&ext_csd[212]; mmc_size = *sec_count; } mmc_window_start = 0; mmc_window_end = INT_MAX; #ifdef SANSA_FUZEPLUS if(imx233_partitions_is_window_enabled()) { /* WARNING: mmc_first_drive is not set yet at this point */ uint8_t mbr[512]; ret = mmc_read_sectors(IF_MD2(0,) 0, 1, mbr); if(ret) panicf("cannot read MBR: %d", ret); ret = imx233_partitions_compute_window(mbr, &mmc_window_start, &mmc_window_end); if(ret) panicf("cannot compute partitions window: %d", ret); mmc_size = mmc_window_end - mmc_window_start; } #endif return 0; } int mmc_num_drives(int first_drive) { mmc_first_drive = first_drive; return 1; } #ifdef STORAGE_GET_INFO void mmc_get_info(IF_MD2(int drive,) struct storage_info *info) { #ifdef HAVE_MULTIDRIVE (void) drive; #endif info->sector_size = 512; info->num_sectors = mmc_size; info->vendor = "Rockbox"; info->product = "Internal Storage"; info->revision = "0.00"; } #endif static int transfer_sectors(IF_MD2(int drive,) unsigned long start, int count, void *buf, bool read) { IF_MD((void) drive); /* check window */ start += mmc_window_start; if((start + count) > mmc_window_end) return -201; /* get mutex (needed because we do multiple commands for count > 0) */ mutex_lock(&mmc_mutex); int ret = 0; uint32_t resp; mmc_last_activity = current_tick; mmc_is_active = true; do { int this_count = MIN(count, IMX233_MAX_SSP_XFER_SIZE / 512); if(this_count == 1) { ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, read ? 17 : 24, start, SSP_SHORT_RESP, buf, this_count, false, read, &resp); } else { ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, 23, this_count, SSP_SHORT_RESP, NULL, 0, false, false, &resp); if(ret == 0) ret = imx233_ssp_sd_mmc_transfer(MMC_SSP, read ? 18 : 25, start, SSP_SHORT_RESP, buf, this_count, false, read, &resp); } count -= this_count; start += this_count; buf += this_count * 512; }while(count != 0 && ret == SSP_SUCCESS); mmc_is_active = false; mutex_unlock(&mmc_mutex); return ret; } int mmc_read_sectors(IF_MD2(int drive,) unsigned long start, int count, void *buf) { return transfer_sectors(IF_MD2(drive,) start, count, buf, true); } int mmc_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf) { return transfer_sectors(IF_MD2(drive,) start, count, (void *)buf, false); } bool mmc_present(IF_MD(int drive)) { IF_MD((void) drive); return true; } bool mmc_removable(IF_MD(int drive)) { IF_MD((void) drive); return false; } void mmc_sleep(void) { } void mmc_sleepnow(void) { } bool mmc_disk_is_active(void) { return mmc_is_active; } bool mmc_usb_active(void) { return mmc_disk_is_active(); } int mmc_soft_reset(void) { return 0; } int mmc_flush(void) { return 0; } void mmc_spin(void) { } void mmc_spindown(int seconds) { (void) seconds; } long mmc_last_disk_activity(void) { return mmc_last_activity; } int mmc_spinup_time(void) { return 0; } void mmc_enable(bool enable) { (void) enable; }