/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Michael Sevakis * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "mc13783.h" #include "adc.h" #include "adc-target.h" #include "kernel.h" /* Do this so we may read all channels in a single SPI message */ static const unsigned char reg_array[4] = { MC13783_ADC2, MC13783_ADC2, MC13783_ADC2, MC13783_ADC2, }; static uint32_t channels[2][4]; static struct wakeup adc_wake; static struct mutex adc_mtx; static long last_adc_read[2]; /* One for each input group */ /* Read 10-bit ADC channel */ unsigned short adc_read(int channel) { uint32_t data; int input_select; if ((unsigned)channel >= NUM_ADC_CHANNELS) return ADC_READ_ERROR; input_select = channel >> 3; mutex_lock(&adc_mtx); /* Limit the traffic through here */ if (current_tick != last_adc_read[input_select]) { /* Keep enable, start conversion, increment from channel 0, * increment from channel 4 */ uint32_t adc1 = MC13783_ADEN | MC13783_ASC | MC13783_ADA1w(0) | MC13783_ADA2w(4); if (input_select == 1) adc1 |= MC13783_ADSEL; /* 2nd set of inputs */ /* Start conversion */ mc13783_write(MC13783_ADC1, adc1); /* Wait for done signal */ wakeup_wait(&adc_wake, TIMEOUT_BLOCK); /* Read all 8 channels that are converted - two channels in each * word. */ mc13783_read_regset(reg_array, channels[input_select], 4); last_adc_read[input_select] = current_tick; } data = channels[input_select][channel & 3]; mutex_unlock(&adc_mtx); /* Channels 0-3/8-11 in ADD1, 4-7/12-15 in ADD2 */ return (channel & 4) ? MC13783_ADD2r(data) : MC13783_ADD1r(data); } bool adc_enable_channel(int channel, bool enable) { uint32_t bit, mask; switch (channel) { case ADC_CHARGER_CURRENT: mask = MC13783_CHRGICON; break; case ADC_BATTERY_TEMP: mask = MC13783_RTHEN; break; default: return false; } bit = enable ? mask : 0; return mc13783_write_masked(MC13783_ADC0, bit, mask) != MC13783_DATA_ERROR; } /* Called by mc13783 interrupt thread when conversion is complete */ void adc_done(void) { wakeup_signal(&adc_wake); } void adc_init(void) { wakeup_init(&adc_wake); mutex_init(&adc_mtx); /* Init so first reads get data */ last_adc_read[0] = last_adc_read[1] = current_tick-1; /* Enable increment-by-read, turn off extra conversions. */ mc13783_write(MC13783_ADC0, MC13783_ADINC2 | MC13783_ADINC1); /* Enable ADC, set multi-channel mode */ mc13783_write(MC13783_ADC1, MC13783_ADEN); /* Enable ADCDONE event */ mc13783_write(MC13783_INTERRUPT_STATUS0, MC13783_ADCDONEI); mc13783_enable_event(MC13783_ADCDONE_EVENT); }