// Game_Music_Emu 0.5.5. http://www.slack.net/~ant/ #include "kss_emu.h" #include "blargg_endian.h" /* Copyright (C) 2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" long const clock_rate = 3579545; const char gme_wrong_file_type [] = "Wrong file type for this emulator"; int const stereo = 2; // number of channels for stereo int const silence_max = 6; // seconds int const silence_threshold = 0x10; long const fade_block_size = 512; int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift) static void clear_track_vars( struct Kss_Emu* this ) { this->current_track = -1; this->out_time = 0; this->emu_time = 0; this->emu_track_ended_ = true; this->track_ended = true; this->fade_start = INT_MAX / 2 + 1; this->fade_step = 1; this->silence_time = 0; this->silence_count = 0; this->buf_remain = 0; // warning(); // clear warning } static blargg_err_t init_opl_apu( enum opl_type_t type, struct Opl_Apu* out ) { blip_time_t const period = 72; int const rate = clock_rate / period; return Opl_init( out, rate * period, rate, period, type ); } void Kss_init( struct Kss_Emu* this ) { this->sample_rate = 0; this->mute_mask_ = 0; this->tempo = (int)(FP_ONE_TEMPO); this->gain = (int)FP_ONE_GAIN; this->chip_flags = 0; // defaults this->max_initial_silence = 2; this->silence_lookahead = 6; this->ignore_silence = false; this->voice_count = 0; clear_track_vars( this ); memset( this->unmapped_read, 0xFF, sizeof this->unmapped_read ); // Init all stuff Buffer_init( &this->stereo_buffer ); Z80_init( &this->cpu ); Rom_init( &this->rom, page_size ); // Initialize all apus just once (?) Sms_apu_init( &this->sms.psg); Ay_apu_init( &this->msx.psg ); Scc_init( &this->msx.scc ); #ifndef KSS_EMU_NO_FMOPL init_opl_apu( type_smsfmunit, &this->sms.fm ); init_opl_apu( type_msxmusic, &this->msx.music ); init_opl_apu( type_msxaudio, &this->msx.audio ); #endif } // Track info static blargg_err_t check_kss_header( void const* header ) { if ( memcmp( header, "KSCC", 4 ) && memcmp( header, "KSSX", 4 ) ) return gme_wrong_file_type; return 0; } // Setup static void update_gain( struct Kss_Emu* this ) { int g = this->gain; if ( msx_music_enabled( this ) || msx_audio_enabled( this ) || sms_fm_enabled( this ) ) { g = (g*3) / 4; //g *= 0.75; } else { if ( this->scc_accessed ) g = (g*6) / 5; //g *= 1.2; } if ( sms_psg_enabled( this ) ) Sms_apu_volume( &this->sms.psg, g ); if ( sms_fm_enabled( this ) ) Opl_volume( &this->sms.fm, g ); if ( msx_psg_enabled( this ) ) Ay_apu_volume( &this->msx.psg, g ); if ( msx_scc_enabled( this ) ) Scc_volume( &this->msx.scc, g ); if ( msx_music_enabled( this ) ) Opl_volume( &this->msx.music, g ); if ( msx_audio_enabled( this ) ) Opl_volume( &this->msx.audio, g ); } blargg_err_t Kss_load_mem( struct Kss_Emu* this, const void* data, long size ) { /* warning( core.warning() ); */ memset( &this->header, 0, sizeof this->header ); assert( offsetof (header_t,msx_audio_vol) == header_size - 1 ); RETURN_ERR( Rom_load( &this->rom, data, size, header_base_size, &this->header, 0 ) ); RETURN_ERR( check_kss_header( this->header.tag ) ); this->chip_flags = 0; this->header.last_track [0] = 255; if ( this->header.tag [3] == 'C' ) { if ( this->header.extra_header ) { this->header.extra_header = 0; /* warning( "Unknown data in header" ); */ } if ( this->header.device_flags & ~0x0F ) { this->header.device_flags &= 0x0F; /* warning( "Unknown data in header" ); */ } } else if ( this->header.extra_header ) { if ( this->header.extra_header != header_ext_size ) { this->header.extra_header = 0; /* warning( "Invalid extra_header_size" ); */ } else { memcpy( this->header.data_size, this->rom.file_data, header_ext_size ); } } #ifndef NDEBUG { int ram_mode = this->header.device_flags & 0x84; // MSX if ( this->header.device_flags & 0x02 ) // SMS ram_mode = (this->header.device_flags & 0x88); if ( ram_mode ) blargg_dprintf_( "RAM not supported\n" ); // TODO: support } #endif this->track_count = get_le16( this->header.last_track ) + 1; this->m3u.size = 0; this->scc_enabled = false; if ( this->header.device_flags & 0x02 ) // Sega Master System { int const osc_count = sms_osc_count + opl_osc_count; // sms.psg this->voice_count = sms_osc_count; this->chip_flags |= sms_psg_flag; // sms.fm if ( this->header.device_flags & 0x01 ) { this->voice_count = osc_count; this->chip_flags |= sms_fm_flag; } } else // MSX { int const osc_count = ay_osc_count + opl_osc_count; // msx.psg this->voice_count = ay_osc_count; this->chip_flags |= msx_psg_flag; /* if ( this->header.device_flags & 0x10 ) warning( "MSX stereo not supported" ); */ // msx.music if ( this->header.device_flags & 0x01 ) { this->voice_count = osc_count; this->chip_flags |= msx_music_flag; } #ifndef KSS_EMU_NO_FMOPL // msx.audio if ( this->header.device_flags & 0x08 ) { this->voice_count = osc_count; this->chip_flags |= msx_audio_flag; } #endif if ( !(this->header.device_flags & 0x80) ) { if ( !(this->header.device_flags & 0x84) ) this->scc_enabled = scc_enabled_true; // msx.scc this->chip_flags |= msx_scc_flag; this->voice_count = ay_osc_count + scc_osc_count; } } this->silence_lookahead = 6; if ( sms_fm_enabled( this ) || msx_music_enabled( this ) || msx_audio_enabled( this ) ) { if ( !Opl_supported() ) ; /* warning( "FM sound not supported" ); */ else this->silence_lookahead = 3; // Opl_Apu is really slow } this->clock_rate_ = clock_rate; Buffer_clock_rate( &this->stereo_buffer, clock_rate ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buffer ); Sound_set_tempo( this, this->tempo ); Sound_mute_voices( this, this->mute_mask_ ); return 0; } static void set_voice( struct Kss_Emu* this, int i, struct Blip_Buffer* center, struct Blip_Buffer* left, struct Blip_Buffer* right ) { if ( sms_psg_enabled( this ) ) // Sega Master System { i -= sms_osc_count; if ( i < 0 ) { Sms_apu_set_output( &this->sms.psg, i + sms_osc_count, center, left, right ); return; } if ( sms_fm_enabled( this ) && i < opl_osc_count ) Opl_set_output( &this->sms.fm, center ); } else if ( msx_psg_enabled( this ) ) // MSX { i -= ay_osc_count; if ( i < 0 ) { Ay_apu_set_output( &this->msx.psg, i + ay_osc_count, center ); return; } if ( msx_scc_enabled( this ) && i < scc_osc_count ) Scc_set_output( &this->msx.scc, i, center ); if ( msx_music_enabled( this ) && i < opl_osc_count ) Opl_set_output( &this->msx.music, center ); if ( msx_audio_enabled( this ) && i < opl_osc_count ) Opl_set_output( &this->msx.audio, center ); } } // Emulation void jsr( struct Kss_Emu* this, byte const addr [] ) { this->ram [--this->cpu.r.sp] = idle_addr >> 8; this->ram [--this->cpu.r.sp] = idle_addr & 0xFF; this->cpu.r.pc = get_le16( addr ); } static void set_bank( struct Kss_Emu* this, int logical, int physical ) { int const bank_size = (16 * 1024L) >> (this->header.bank_mode >> 7 & 1); int addr = 0x8000; if ( logical && bank_size == 8 * 1024 ) addr = 0xA000; physical -= this->header.first_bank; if ( (unsigned) physical >= (unsigned) this->bank_count ) { byte* data = this->ram + addr; Z80_map_mem( &this->cpu, addr, bank_size, data, data ); } else { int offset, phys = physical * bank_size; for ( offset = 0; offset < bank_size; offset += page_size ) Z80_map_mem( &this->cpu, addr + offset, page_size, this->unmapped_write, Rom_at_addr( &this->rom, phys + offset ) ); } } void cpu_write( struct Kss_Emu* this, addr_t addr, int data ) { *Z80_write( &this->cpu, addr ) = data; if ( (addr & this->scc_enabled) == 0x8000 ) { // TODO: SCC+ support data &= 0xFF; switch ( addr ) { case 0x9000: set_bank( this, 0, data ); return; case 0xB000: set_bank( this, 1, data ); return; case 0xBFFE: // selects between mapping areas (we just always enable both) if ( data == 0 || data == 0x20 ) return; } int scc_addr = (addr & 0xDFFF) - 0x9800; if ( msx_scc_enabled( this ) && (unsigned) scc_addr < 0xB0 ) { this->scc_accessed = true; //if ( (unsigned) (scc_addr - 0x90) < 0x10 ) // scc_addr -= 0x10; // 0x90-0x9F mirrors to 0x80-0x8F if ( scc_addr < scc_reg_count ) Scc_write( &this->msx.scc, Z80_time( &this->cpu ), addr, data ); return; } } } void cpu_out( struct Kss_Emu* this, kss_time_t time, kss_addr_t addr, int data ) { data &= 0xFF; switch ( addr & 0xFF ) { case 0xA0: if ( msx_psg_enabled( this ) ) Ay_apu_write_addr( &this->msx.psg, data ); return; case 0xA1: if ( msx_psg_enabled( this ) ) Ay_apu_write_data( &this->msx.psg, time, data ); return; case 0x06: if ( sms_psg_enabled( this ) && (this->header.device_flags & 0x04) ) { Sms_apu_write_ggstereo( &this->sms.psg, time, data ); return; } break; case 0x7E: case 0x7F: if ( sms_psg_enabled( this ) ) { Sms_apu_write_data( &this->sms.psg, time, data ); return; } break; #define OPL_WRITE_HANDLER( base, name, opl )\ case base : if ( name##_enabled( this ) ) { Opl_write_addr( opl, data ); return; } break;\ case base+1: if ( name##_enabled( this ) ) { Opl_write_data( opl, time, data ); return; } break; OPL_WRITE_HANDLER( 0x7C, msx_music, &this->msx.music ) OPL_WRITE_HANDLER( 0xC0, msx_audio, &this->msx.audio ) OPL_WRITE_HANDLER( 0xF0, sms_fm, &this->sms.fm ) case 0xFE: set_bank( this, 0, data ); return; #ifndef NDEBUG case 0xA8: // PPI return; #endif } /* cpu_out( time, addr, data ); */ } int cpu_in( struct Kss_Emu* this, kss_time_t time, kss_addr_t addr ) { switch ( addr & 0xFF ) { case 0xC0: case 0xC1: if ( msx_audio_enabled( this ) ) return Opl_read( &this->msx.audio, time, addr & 1 ); break; case 0xA2: if ( msx_psg_enabled( this ) ) return Ay_apu_read( &this->msx.psg ); break; #ifndef NDEBUG case 0xA8: // PPI return 0; #endif } /* return cpu_in( time, addr ); */ return 0xFF; } static blargg_err_t run_clocks( struct Kss_Emu* this, blip_time_t* duration_ ) { blip_time_t duration = *duration_; RETURN_ERR( end_frame( this, duration ) ); if ( sms_psg_enabled( this ) ) Sms_apu_end_frame( &this->sms.psg, duration ); if ( sms_fm_enabled( this ) ) Opl_end_frame( &this->sms.fm, duration ); if ( msx_psg_enabled( this ) ) Ay_apu_end_frame( &this->msx.psg, duration ); if ( msx_scc_enabled( this ) ) Scc_end_frame( &this->msx.scc, duration ); if ( msx_music_enabled( this ) ) Opl_end_frame( &this->msx.music, duration ); if ( msx_audio_enabled( this ) ) Opl_end_frame( &this->msx.audio, duration ); return 0; } blargg_err_t end_frame( struct Kss_Emu* this, kss_time_t end ) { while ( Z80_time( &this->cpu ) < end ) { kss_time_t next = min( end, this->next_play ); run_cpu( this, next ); if ( this->cpu.r.pc == idle_addr ) Z80_set_time( &this->cpu, next ); if ( Z80_time( &this->cpu ) >= this->next_play ) { this->next_play += this->play_period; if ( this->cpu.r.pc == idle_addr ) { if ( !this->gain_updated ) { this->gain_updated = true; update_gain( this ); } jsr( this, this->header.play_addr ); } } } this->next_play -= end; check( this->next_play >= 0 ); Z80_adjust_time( &this->cpu, -end ); return 0; } // MUSIC blargg_err_t Kss_set_sample_rate( struct Kss_Emu* this, long rate ) { require( !this->sample_rate ); // sample rate can't be changed once set RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buffer, rate, 1000 / 20 ) ); // Set bass frequency Buffer_bass_freq( &this->stereo_buffer, 180 ); this->sample_rate = rate; return 0; } void Sound_mute_voice( struct Kss_Emu* this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Kss_Emu* this, int mask ) { require( this->sample_rate ); // sample rate must be set first this->mute_mask_ = mask; int i; for ( i = this->voice_count; i--; ) { if ( mask & (1 << i) ) { set_voice( this, i, 0, 0, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buffer ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing set_voice( this, i, ch.center, ch.left, ch.right ); } } } void Sound_set_tempo( struct Kss_Emu* this, int t ) { require( this->sample_rate ); // sample rate must be set first int const min = (int)(FP_ONE_TEMPO*0.02); int const max = (int)(FP_ONE_TEMPO*4.00); if ( t < min ) t = min; if ( t > max ) t = max; this->tempo = t; blip_time_t period = (this->header.device_flags & 0x40 ? clock_rate / 50 : clock_rate / 60); this->play_period = (blip_time_t) ((period * FP_ONE_TEMPO) / t); } void fill_buf( struct Kss_Emu* this ); blargg_err_t Kss_start_track( struct Kss_Emu* this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } this->current_track = track; Buffer_clear( &this->stereo_buffer ); if ( sms_psg_enabled( this ) ) Sms_apu_reset( &this->sms.psg, 0, 0 ); if ( sms_fm_enabled( this ) ) Opl_reset( &this->sms.fm ); if ( msx_psg_enabled( this ) ) Ay_apu_reset( &this->msx.psg ); if ( msx_scc_enabled( this ) ) Scc_reset( &this->msx.scc ); if ( msx_music_enabled( this ) ) Opl_reset( &this->msx.music ); if ( msx_audio_enabled( this ) ) Opl_reset( &this->msx.audio ); this->scc_accessed = false; update_gain( this ); memset( this->ram, 0xC9, 0x4000 ); memset( this->ram + 0x4000, 0, sizeof this->ram - 0x4000 ); // copy driver code to lo RAM static byte const bios [] = { 0xD3, 0xA0, 0xF5, 0x7B, 0xD3, 0xA1, 0xF1, 0xC9, // $0001: WRTPSG 0xD3, 0xA0, 0xDB, 0xA2, 0xC9 // $0009: RDPSG }; static byte const vectors [] = { 0xC3, 0x01, 0x00, // $0093: WRTPSG vector 0xC3, 0x09, 0x00, // $0096: RDPSG vector }; memcpy( this->ram + 0x01, bios, sizeof bios ); memcpy( this->ram + 0x93, vectors, sizeof vectors ); // copy non-banked data into RAM int load_addr = get_le16( this->header.load_addr ); int orig_load_size = get_le16( this->header.load_size ); int load_size = min( orig_load_size, (int) this->rom.file_size ); load_size = min( load_size, (int) mem_size - load_addr ); /* if ( load_size != orig_load_size ) warning( "Excessive data size" ); */ memcpy( this->ram + load_addr, this->rom.file_data + this->header.extra_header, load_size ); Rom_set_addr( &this->rom, -load_size - this->header.extra_header ); // check available bank data int const bank_size = (16 * 1024L) >> (this->header.bank_mode >> 7 & 1); int max_banks = (this->rom.file_size - load_size + bank_size - 1) / bank_size; this->bank_count = this->header.bank_mode & 0x7F; if ( this->bank_count > max_banks ) { this->bank_count = max_banks; /* warning( "Bank data missing" ); */ } //dprintf( "load_size : $%X\n", load_size ); //dprintf( "bank_size : $%X\n", bank_size ); //dprintf( "bank_count: %d (%d claimed)\n", bank_count, this->header.bank_mode & 0x7F ); this->ram [idle_addr] = 0xFF; Z80_reset( &this->cpu, this->unmapped_write, this->unmapped_read ); Z80_map_mem( &this->cpu, 0, mem_size, this->ram, this->ram ); this->cpu.r.sp = 0xF380; this->cpu.r.b.a = track; this->cpu.r.b.h = 0; this->next_play = this->play_period; this->gain_updated = false; jsr( this, this->header.init_addr ); this->emu_track_ended_ = false; this->track_ended = false; if ( !this->ignore_silence ) { // play until non-silence or end of track long end; for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; ) { fill_buf( this ); if ( this->buf_remain | (int) this->emu_track_ended_ ) break; } this->emu_time = this->buf_remain; this->out_time = 0; this->silence_time = 0; this->silence_count = 0; } /* return track_ended() ? warning() : 0; */ return 0; } // Tell/Seek static blargg_long msec_to_samples( blargg_long msec, long sample_rate ) { blargg_long sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } long Track_tell( struct Kss_Emu* this ) { blargg_long rate = this->sample_rate * stereo; blargg_long sec = this->out_time / rate; return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Kss_Emu* this, long msec ) { blargg_long time = msec_to_samples( msec, this->sample_rate ); if ( time < this->out_time ) RETURN_ERR( Kss_start_track( this, this->current_track ) ); return Track_skip( this, time - this->out_time ); } blargg_err_t play_( struct Kss_Emu* this, long count, sample_t* out ); static blargg_err_t skip_( struct Kss_Emu* this, long count ) { // for long skip, mute sound const long threshold = 30000; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); while ( count > threshold / 2 && !this->emu_track_ended_ ) { RETURN_ERR( play_( this, buf_size, this->buf ) ); count -= buf_size; } Sound_mute_voices( this, saved_mute ); } while ( count && !this->emu_track_ended_ ) { long n = buf_size; if ( n > count ) n = count; count -= n; RETURN_ERR( play_( this, n, this->buf ) ); } return 0; } blargg_err_t Track_skip( struct Kss_Emu* this, long count ) { require( this->current_track >= 0 ); // start_track() must have been called already this->out_time += count; // remove from silence and buf first { long n = min( count, this->silence_count ); this->silence_count -= n; count -= n; n = min( count, this->buf_remain ); this->buf_remain -= n; count -= n; } if ( count && !this->emu_track_ended_ ) { this->emu_time += count; if ( skip_( this, count ) ) this->emu_track_ended_ = true; } if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended this->track_ended |= this->emu_track_ended_; return 0; } // Fading void Track_set_fade( struct Kss_Emu* this, long start_msec, long length_msec ) { this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo); this->fade_start = msec_to_samples( start_msec, this->sample_rate ); } // unit / pow( 2.0, (double) x / step ) static int int_log( blargg_long x, int step, int unit ) { int shift = x / step; int fraction = (x - shift * step) * unit / step; return ((unit - fraction) + (fraction >> 1)) >> shift; } static void handle_fade( struct Kss_Emu *this, long out_count, sample_t* out ) { int i; for ( i = 0; i < out_count; i += fade_block_size ) { int const shift = 14; int const unit = 1 << shift; int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size, this->fade_step, unit ); if ( gain < (unit >> fade_shift) ) this->track_ended = this->emu_track_ended_ = true; sample_t* io = &out [i]; int count; for ( count = min( fade_block_size, out_count - i ); count; --count ) { *io = (sample_t) ((*io * gain) >> shift); ++io; } } } // Silence detection static void emu_play( struct Kss_Emu* this, long count, sample_t* out ) { check( current_track_ >= 0 ); this->emu_time += count; if ( this->current_track >= 0 && !this->emu_track_ended_ ) { if ( play_( this, count, out ) ) this->emu_track_ended_ = true; } else memset( out, 0, count * sizeof *out ); } // number of consecutive silent samples at end static long count_silence( sample_t* begin, long size ) { sample_t first = *begin; *begin = silence_threshold; // sentinel sample_t* p = begin + size; while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { } *begin = first; return size - (p - begin); } // fill internal buffer and check it for silence void fill_buf( struct Kss_Emu* this ) { assert( !this->buf_remain ); if ( !this->emu_track_ended_ ) { emu_play( this, buf_size, this->buf ); long silence = count_silence( this->buf, buf_size ); if ( silence < buf_size ) { this->silence_time = this->emu_time - silence; this->buf_remain = buf_size; return; } } this->silence_count += buf_size; } blargg_err_t Kss_play( struct Kss_Emu* this, long out_count, sample_t* out ) { if ( this->track_ended ) { memset( out, 0, out_count * sizeof *out ); } else { require( this->current_track >= 0 ); require( out_count % stereo == 0 ); assert( this->emu_time >= this->out_time ); // prints nifty graph of how far ahead we are when searching for silence //debug_printf( "%*s \n", int ((emu_time - out_time) * 7 / sample_rate()), "*" ); long pos = 0; if ( this->silence_count ) { // during a run of silence, run emulator at >=2x speed so it gets ahead long ahead_time = this->silence_lookahead * (this->out_time + out_count -this->silence_time) + this->silence_time; while ( this->emu_time < ahead_time && !(this->buf_remain |this-> emu_track_ended_) ) fill_buf( this ); // fill with silence pos = min( this->silence_count, out_count ); memset( out, 0, pos * sizeof *out ); this->silence_count -= pos; if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate ) { this->track_ended = this->emu_track_ended_ = true; this->silence_count = 0; this->buf_remain = 0; } } if ( this->buf_remain ) { // empty silence buf long n = min( this->buf_remain, out_count - pos ); memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out ); this->buf_remain -= n; pos += n; } // generate remaining samples normally long remain = out_count - pos; if ( remain ) { emu_play( this, remain, out + pos ); this->track_ended |= this->emu_track_ended_; if ( !this->ignore_silence || this->out_time > this->fade_start ) { // check end for a new run of silence long silence = count_silence( out + pos, remain ); if ( silence < remain ) this->silence_time = this->emu_time - silence; if ( this->emu_time - this->silence_time >= buf_size ) fill_buf( this ); // cause silence detection on next play() } } if ( this->out_time > this->fade_start ) handle_fade( this, out_count, out ); } this->out_time += out_count; return 0; } blargg_err_t play_( struct Kss_Emu* this, long count, sample_t* out ) { long remain = count; while ( remain ) { remain -= Buffer_read_samples( &this->stereo_buffer, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buffer ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buffer ); Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buffer ); /* blip_time_t clocks_emulated = (blargg_long) msec * clock_rate_ / 1000; */ blip_time_t clocks_emulated = msec * this->clock_rate_ / 1000 - 100; RETURN_ERR( run_clocks( this, &clocks_emulated ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buffer, clocks_emulated ); } } return 0; }