#include "config.h" #include "cpu.h" #include "string.h" #include "lcd.h" #include "kernel.h" #include "lcd-target.h" #define LCDADDR(x, y) (&lcd_framebuffer[(y)][(x)]) static volatile bool lcd_on = true; volatile bool lcd_poweroff = false; static unsigned lcd_yuv_options = 0; /* ** This is imported from lcd-16bit.c */ extern struct viewport* current_vp; /* Copies a rectangle from one framebuffer to another. Can be used in single transfer mode with width = num pixels, and height = 1 which allows a full-width rectangle to be copied more efficiently. */ extern void lcd_copy_buffer_rect(fb_data *dst, const fb_data *src, int width, int height); bool lcd_enabled() { return lcd_on; } unsigned int LCDBANK(unsigned int address) { return ((address >> 22) & 0xff); } unsigned int LCDBASEU(unsigned int address) { return (address & ((1 << 22)-1)) >> 1; } unsigned int LCDBASEL(unsigned int address) { address += 320*240*2; return (address & ((1 << 22)-1)) >> 1; } inline void delay_cycles(volatile int delay) { while(delay>0) delay--; } void SPI_LCD_CS(bool select) { delay_cycles(0x4FFF); GPBCON&=~0x30000; GPBCON|=0x10000; if(select) GPBDAT|=0x100; else GPBDAT&=~0x100; } void reset_LCD(bool reset) { GPBCON&=~0xC000; GPBCON|=0x4000; if(reset) GPBDAT|=0x80; else GPBDAT&=~0x80; } void SPI_Send_Bytes(const unsigned char *array, int count) { while (count--) { while ((SPSTA0&0x01)==0){}; SPTDAT0=*array++; } } void Setup_LCD_SPI(void) { CLKCON|=0x40000; SPI_LCD_CS(false); SPCON0=0x3E; SPPRE0=24; } void Setup_LCD_CTRL(void) { /* ENVID = 0, BPPMODE = 16 bpp, PNRMODE = TFT, MMODE = Each Frame, CLKVAL = 8 */ LCDCON1 = 0x878; /* VCPW = 1, VFPD = 5, LINEVAL = 319, VBPD = 7 */ LCDCON2 = 0x74FC141; /* HFPD = 9, HOZVAL = 239, HBPD = 7 */ LCDCON3 = 0x38EF09; /* HSPW = 7 */ LCDCON4 = 7; /* HWSWP = 1, INVVFRAM = 1, INVVLINE = 1, FRM565 = 1, All others = 0 */ LCDCON5 = 0xB01; LCDSADDR1 = (LCDBANK((unsigned)FRAME) << 21) | (LCDBASEU((unsigned)FRAME)); LCDSADDR2 = LCDBASEL((unsigned)FRAME); LCDSADDR3 = 0x000000F0; } /* LCD init */ void lcd_init_device(void) { #ifdef BOOTLOADER int i; /* When the Rockbox bootloader starts, we are changing framebuffer address, but we don't want what's shown on the LCD to change until we do an lcd_update(), so copy the data from the old framebuffer to the new one */ unsigned short *buf = (unsigned short*)FRAME; memcpy(FRAME, (short *)((LCDSADDR1)<<1), 320*240*2); /* The Rockbox bootloader is transitioning from RGB555I to RGB565 mode so convert the frambuffer data accordingly */ for(i=0; i< 320*240; i++){ *buf = ((*buf>>1) & 0x1F) | (*buf & 0xffc0); buf++; } #endif /* Set pins up */ GPCCON |= 0xAAA000A8; GPCUP |= 0xFC0E; GPDCON |= 0xAAA0AAA0; GPDUP |= 0xFCFC; GPHUP &= 0x600; GPECON |= 0x0A800000; GPEUP |= 0x3800; GPBUP |= 0x181; #if !defined(BOOTLOADER) lcd_poweroff = false; #endif CLKCON |= 0x20; /* enable LCD clock */ Setup_LCD_SPI(); Setup_LCD_CTRL(); delay_cycles(0xA000); reset_LCD(true); LCDCON1|=0x01; delay_cycles(0x80000); #if 0 /* Setup the appropriate screen modes */ TCONSEL= 0xCE6; #endif /* SPI data - Right now we are not sure what each of these SPI writes is actually * telling the lcd. Many thanks to Alex Gerchanovsky for discovering them. * * This looks like a register, data combination, 0 denoting a register address, * 1 denoting data. Addr 0x04 is used more than once and may be an enable. */ const unsigned char initbuf[] = { 0,0x0F,1,0x01, 0,0x09,1,0x06, 0,0x16,1,0xA6, 0,0x1E,1,0x49, 0,0x1F,1,0x26, 0,0x0B,1,0x2F, 0,0x0C,1,0x2B, 0,0x19,1,0x5E, 0,0x1A,1,0x15, 0,0x1B,1,0x15, 0,0x1D,1,0x01, 0,0x00,1,0x03, 0,0x01,1,0x10, 0,0x02,1,0x0A, 0,0x06,1,0x04, 0,0x08,1,0x2E, 0,0x24,1,0x12, 0,0x25,1,0x3F, 0,0x26,1,0x0B, 0,0x27,1,0x00, 0,0x28,1,0x00, 0,0x29,1,0xF6, 0,0x2A,1,0x03, 0,0x2B,1,0x0A, 0,0x04,1,0x01, }; SPI_LCD_CS(true); SPI_Send_Bytes(initbuf, sizeof(initbuf)); SPI_LCD_CS(false); CLKCON &= ~0x40000; /* disable SPI clock */ } /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { fb_data *dst, *src; if (!lcd_on) return; if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; /* Clip right */ if (x < 0) width += x, x = 0; /* Clip left */ if (width <= 0) return; /* nothing left to do */ if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; /* Clip bottom */ if (y < 0) height += y, y = 0; /* Clip top */ if (height <= 0) return; /* nothing left to do */ /* TODO: It may be faster to swap the addresses of lcd_driver_framebuffer * and lcd_framebuffer */ dst = (fb_data *)FRAME + LCD_WIDTH*y + x; src = &lcd_framebuffer[y][x]; /* Copy part of the Rockbox framebuffer to the second framebuffer */ if (width < LCD_WIDTH) { /* Not full width - do line-by-line */ lcd_copy_buffer_rect(dst, src, width, height); } else { /* Full width - copy as one line */ lcd_copy_buffer_rect(dst, src, LCD_WIDTH*height, 1); } } void lcd_enable(bool state) { if(!lcd_poweroff) return; if(state) { if(!lcd_on) { lcd_on = true; lcd_update(); LCDCON1 |= 1; } } else { if(lcd_on) { lcd_on = false; LCDCON1 &= ~1; } } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { if (!lcd_on) return; lcd_copy_buffer_rect((fb_data *)FRAME, &lcd_framebuffer[0][0], LCD_WIDTH*LCD_HEIGHT, 1); } void lcd_bitmap_transparent_part(const fb_data *src, int src_x, int src_y, int stride, int x, int y, int width, int height) { int w, px; fb_data *dst; if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; /* Clip right */ if (x < 0) width += x, x = 0; /* Clip left */ if (width <= 0) return; /* nothing left to do */ if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; /* Clip bottom */ if (y < 0) height += y, y = 0; /* Clip top */ if (height <= 0) return; /* nothing left to do */ src += stride * src_y + src_x; /* move starting point */ dst = &lcd_framebuffer[y][x]; asm volatile ( ".rowstart: \r\n" "mov %[w], %[width] \r\n" /* Load width for inner loop */ ".nextpixel: \r\n" "ldrh %[px], [%[s]], #2 \r\n" /* Load src pixel */ "add %[d], %[d], #2 \r\n" /* Uncoditionally increment dst */ "cmp %[px], %[fgcolor] \r\n" /* Compare to foreground color */ "streqh %[fgpat], [%[d], #-2] \r\n" /* Store foregroud if match */ "cmpne %[px], %[transcolor] \r\n" /* Compare to transparent color */ "strneh %[px], [%[d], #-2] \r\n" /* Store dst if not transparent */ "subs %[w], %[w], #1 \r\n" /* Width counter has run down? */ "bgt .nextpixel \r\n" /* More in this row? */ "add %[s], %[s], %[sstp], lsl #1 \r\n" /* Skip over to start of next line */ "add %[d], %[d], %[dstp], lsl #1 \r\n" "subs %[h], %[h], #1 \r\n" /* Height counter has run down? */ "bgt .rowstart \r\n" /* More rows? */ : [w]"=&r"(w), [h]"+&r"(height), [px]"=&r"(px), [s]"+&r"(src), [d]"+&r"(dst) : [width]"r"(width), [sstp]"r"(stride - width), [dstp]"r"(LCD_WIDTH - width), [transcolor]"r"(TRANSPARENT_COLOR), [fgcolor]"r"(REPLACEWITHFG_COLOR), [fgpat]"r"(current_vp->fg_pattern) ); } void lcd_yuv_set_options(unsigned options) { lcd_yuv_options = options; } /* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */ extern void lcd_write_yuv420_lines(fb_data *dst, unsigned char const * const src[3], int width, int stride); extern void lcd_write_yuv420_lines_odither(fb_data *dst, unsigned char const * const src[3], int width, int stride, int x_screen, /* To align dither pattern */ int y_screen); /* Performance function to blit a YUV bitmap directly to the LCD */ /* For the Gigabeat - show it rotated */ /* So the LCD_WIDTH is now the height */ void lcd_yuv_blit(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { /* Caches for chroma data so it only need be recaculated every other line */ unsigned char const * yuv_src[3]; off_t z; if (!lcd_on) return; /* Sorry, but width and height must be >= 2 or else */ width &= ~1; height >>= 1; y = LCD_WIDTH - 1 - y; fb_data *dst = (fb_data*)FRAME + x * LCD_WIDTH + y; z = stride*src_y; yuv_src[0] = src[0] + z + src_x; yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1); yuv_src[2] = src[2] + (yuv_src[1] - src[1]); if (lcd_yuv_options & LCD_YUV_DITHER) { do { lcd_write_yuv420_lines_odither(dst, yuv_src, width, stride, y, x); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; dst -= 2; y -= 2; } while (--height > 0); } else { do { lcd_write_yuv420_lines(dst, yuv_src, width, stride); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; dst -= 2; } while (--height > 0); } } void lcd_set_contrast(int val) { (void) val; // TODO: } void lcd_set_invert_display(bool yesno) { (void) yesno; // TODO: } void lcd_blit(const fb_data* data, int bx, int y, int bwidth, int height, int stride) { (void) data; (void) bx; (void) y; (void) bwidth; (void) height; (void) stride; //TODO: } void lcd_set_flip(bool yesno) { (void) yesno; // TODO: }