#include "config.h" ENTRY(start) #if CONFIG_CPU == MCF5249 OUTPUT_FORMAT(elf32-m68k) #elif CONFIG_CPU == TCC730 OUTPUT_FORMAT(elf32-calmrisc16) #else OUTPUT_FORMAT(elf32-sh) #endif INPUT(crt0.o) #if CONFIG_CPU == TCC730 MEMORY { FIRMWARE : ORIGIN = LOADADDRESS, LENGTH = 256K FLASH (RX) : ORIGIN = 0x000000, LENGTH = 1024K ICMEM (RX) : ORIGIN = 0x3FC000, LENGTH = 32K IMEM1 : ORIGIN = 0x200000, LENGTH = 32K IMEM2 : ORIGIN = 0x210000, LENGTH = 32K IMEM3 : ORIGIN = 0x220000, LENGTH = 16K IMEM4 : ORIGIN = 0x230000, LENGTH = 16K DRAM : ORIGIN = 0x000000, LENGTH = 0x3F0000 } SECTIONS { .text LOADADDRESS : { *(.init.text) *(.text) *(.icode) /* We don't put it in ICMEM coz crt1 uses LCD (now)*/ }> FLASH AT> FIRMWARE .icode 0x3FC040: { *(.vectors) }> ICMEM AT> FIRMWARE /* We start at 0x2000, to avoid overwriting Archos' loader datasegment. * If it turns out that we won't call back the loader, this can be set to 0. */ .bss 0x2000 : { *(.bss) . = ALIGN(2); }> DRAM /* Data is put after BSS, to have all strings addresses > VIRT_PTR + VIRT_SIZE. Strings are in rodata, so what we really assert is (.rodata > VIRT_PTR + VIRT_SIZE) See settings.h for details */ .data ALIGN(2): { *(.data) . = ALIGN(2); *(.rodata) . = ALIGN(2); *(.rodata.str1.2) . = ALIGN(2); }> DRAM AT> FIRMWARE .stack ALIGN(2) : { . = . + 0x2000; }> DRAM .idata 0x200000: { *(.idata) }> DRAM _codesize = SIZEOF(.text); _icodecopy = LOADADDR(.icode); _icodestart = ADDR(.icode); _icodesize = SIZEOF(.icode); _datacopy = LOADADDR(.data); _datastart = ADDR(.data); _datasize = SIZEOF(.data); _bssstart = ADDR(.bss); _bsssize = (SIZEOF(.bss) + 1) & ~ 1; _stackbegin = ADDR(.stack); _stackend = ADDR(.stack) + SIZEOF(.stack); _idatastart = ADDR(.idata); /* FIXME: Where to put mp3 buffer? */ _mp3buffer = 0; _mp3end = 0; /* Plugins are not supported on the Gmini*/ _pluginbuf = 0; } #else #if MEMORYSIZE >= 32 #define PLUGINSIZE 0xC0000 #else #define PLUGINSIZE 0x8000 #endif #ifdef DEBUG #define STUBOFFSET 0x10000 #else #define STUBOFFSET 0 #endif #define DRAMSIZE (MEMORYSIZE * 0x100000) - PLUGINSIZE - STUBOFFSET #ifdef IRIVER_H100 #define DRAMORIG 0x30000000 + STUBOFFSET #define IRAMORIG 0x10000000 #define IRAMSIZE 0x18000 #else #define DRAMORIG 0x09000000 + STUBOFFSET #define IRAMORIG 0x0f000000 #define IRAMSIZE 0x1000 #endif #define ENDADDR (DRAMORIG + DRAMSIZE) MEMORY { DRAM : ORIGIN = DRAMORIG, LENGTH = DRAMSIZE IRAM : ORIGIN = IRAMORIG, LENGTH = IRAMSIZE } SECTIONS { .vectors : { *(.resetvectors); *(.vectors); } > DRAM .text : { . = ALIGN(0x200); *(.init.text) *(.text) . = ALIGN(0x4); } > DRAM .rodata : { *(.rodata) *(.rodata.str1.1) *(.rodata.str1.4) . = ALIGN(0x4); /* Pseudo-allocate the copies of the data sections */ _datacopy = .; } > DRAM /* TRICK ALERT! For RAM execution, we put the .data section at the same load address as the copy. Thus, we don't waste extra RAM when we don't actually need the copy. */ .data : AT ( _datacopy ) { _datastart = .; *(.data) . = ALIGN(0x4); _dataend = .; _iramcopy = .; } > DRAM .iram IRAMORIG : AT ( _iramcopy) { _iramstart = .; *(.icode) *(.idata) _iramend = .; } > IRAM /* TRICK ALERT! We want 0x2000 bytes of stack, but we set the section size smaller, and allow the stack to grow into the .iram copy */ .stack ADDR(.data) + SIZEOF(.data) + SIZEOF(.iram): { *(.stack) _stackbegin = . - SIZEOF(.iram); stackbegin = . - SIZEOF(.iram); . += 0x2000 - SIZEOF(.iram); _stackend = .; stackend = .; } > DRAM .bss : { _edata = .; *(.bss) *(COMMON) _end = .; } > DRAM .mp3buf : { _mp3buffer = .; mp3buffer = .; } > DRAM .mp3end ENDADDR: { mp3end = .; _mp3end = .; } > DRAM .plugin ENDADDR: { _pluginbuf = .; pluginbuf = .; } } #endif