/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Michael Sevakis * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "system.h" #include "kernel.h" #include "audio.h" #include "sound.h" #include "sdma-imx31.h" #include "mmu-imx31.h" #include "pcm-internal.h" #define DMA_PLAY_CH_NUM 2 #define DMA_REC_CH_NUM 1 #define DMA_PLAY_CH_PRIORITY 6 #define DMA_REC_CH_PRIORITY 6 static struct buffer_descriptor dma_play_bd NOCACHEBSS_ATTR; static void play_dma_callback(void); static struct channel_descriptor dma_play_cd = { .bd_count = 1, .callback = play_dma_callback, .shp_addr = SDMA_PER_ADDR_SSI2_TX1, .wml = SDMA_SSI_TXFIFO_WML*2, .per_type = SDMA_PER_SSI_SHP, /* SSI2 shared with SDMA core */ .tran_type = SDMA_TRAN_EMI_2_PER, .event_id1 = SDMA_REQ_SSI2_TX1, }; /* The pcm locking relies on the fact the interrupt handlers run to completion * before lower-priority modes proceed. We don't have to touch hardware * registers. Disabling SDMA interrupt would disable DMA callbacks systemwide * and that is not something that is desireable. * * Lock explanation [++.locked]: * Trivial, just increment .locked. * * Unlock explanation [if (--.locked == 0 && .state != 0)]: * If int occurred and saw .locked as nonzero, we'll get a pending * and it will have taken no action other than to set the flag to the * value of .state. If it saw zero for .locked, it will have proceeded * normally into the pcm callbacks. If cb set the pending flag, it has * to be called to kickstart the callback mechanism and DMA. If the unlock * came after a stop, we won't be in the block and DMA will be off. If * we're still doing transfers, cb will see 0 for .locked and if pending, * it won't be called by DMA again. */ struct dma_data { int locked; int callback_pending; /* DMA interrupt happened while locked */ int state; }; static struct dma_data dma_play_data = { /* Initialize to an unlocked, stopped state */ .locked = 0, .callback_pending = 0, .state = 0 }; static void play_dma_callback(void) { void *start; size_t size; bool rror; if (dma_play_data.locked != 0) { /* Callback is locked out */ dma_play_data.callback_pending = dma_play_data.state; return; } rror = dma_play_bd.mode.status & BD_RROR; pcm_play_get_more_callback(rror ? NULL : &start, &size); if (size == 0) return; /* Flush any pending cache writes */ clean_dcache_range(start, size); dma_play_bd.buf_addr = (void *)addr_virt_to_phys((unsigned long)start); dma_play_bd.mode.count = size; dma_play_bd.mode.command = TRANSFER_16BIT; dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; sdma_channel_run(DMA_PLAY_CH_NUM); pcm_play_dma_started_callback(); } void pcm_play_lock(void) { /* Need to prevent DVFS from causing interrupt priority inversion if audio * is locked and a DVFS interrupt fires, blocking reenabling of audio by a * low-priority mode for at least the duration of the lengthy DVFS routine. * Not really an issue with state changes but lockout when playing. * * Keep direct use of DVFS code away from here though. This could provide * more services in the future anyway. */ kernel_audio_locking(true); ++dma_play_data.locked; } void pcm_play_unlock(void) { if (--dma_play_data.locked == 0) { if (dma_play_data.state != 0) { int oldstatus = disable_irq_save(); int pending = dma_play_data.callback_pending; dma_play_data.callback_pending = 0; restore_irq(oldstatus); if (pending != 0) play_dma_callback(); } kernel_audio_locking(false); } } void pcm_dma_apply_settings(void) { audiohw_set_frequency(pcm_fsel); } void pcm_play_dma_init(void) { /* Init DMA channel information */ sdma_channel_init(DMA_PLAY_CH_NUM, &dma_play_cd, &dma_play_bd); sdma_channel_set_priority(DMA_PLAY_CH_NUM, DMA_PLAY_CH_PRIORITY); /* Init audio interfaces */ audiohw_init(); } void pcm_play_dma_postinit(void) { audiohw_postinit(); } static void play_start_pcm(void) { /* Stop transmission (if in progress) */ SSI_SCR2 &= ~SSI_SCR_TE; SSI_SCR2 |= SSI_SCR_SSIEN; /* Enable SSI */ SSI_STCR2 |= SSI_STCR_TFEN0; /* Enable TX FIFO */ dma_play_data.state = 1; /* Check callback on unlock */ /* Do prefill to prevent swapped channels (see TLSbo61214 in MCIMX31CE). * No actual solution was offered but this appears to work. */ SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_SIER2 |= SSI_SIER_TDMAE; /* Enable DMA req. */ SSI_SCR2 |= SSI_SCR_TE; /* Start transmitting */ } static void play_stop_pcm(void) { SSI_SIER2 &= ~SSI_SIER_TDMAE; /* Disable DMA req. */ /* Set state before pending to prevent race with interrupt */ dma_play_data.state = 0; /* Wait for FIFO to empty */ while (SSI_SFCSR_TFCNT0 & SSI_SFCSR2); SSI_STCR2 &= ~SSI_STCR_TFEN0; /* Disable TX */ SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN); /* Disable transmission, SSI */ if (pcm_playing) { /* Stopping: clear buffer info to ensure 0-size readbacks when * stopped */ unsigned long dsa = 0; dma_play_bd.buf_addr = NULL; dma_play_bd.mode.count = 0; clean_dcache_range(&dsa, sizeof(dsa)); sdma_write_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1); } /* Clear any pending callback */ dma_play_data.callback_pending = 0; } void pcm_play_dma_start(const void *addr, size_t size) { sdma_channel_stop(DMA_PLAY_CH_NUM); /* Disable transmission */ SSI_STCR2 &= ~SSI_STCR_TFEN0; SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN); if (!sdma_channel_reset(DMA_PLAY_CH_NUM)) return; clean_dcache_range(addr, size); dma_play_bd.buf_addr = (void *)addr_virt_to_phys((unsigned long)(void *)addr); dma_play_bd.mode.count = size; dma_play_bd.mode.command = TRANSFER_16BIT; dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; play_start_pcm(); sdma_channel_run(DMA_PLAY_CH_NUM); } void pcm_play_dma_stop(void) { sdma_channel_stop(DMA_PLAY_CH_NUM); play_stop_pcm(); } void pcm_play_dma_pause(bool pause) { if (pause) { sdma_channel_pause(DMA_PLAY_CH_NUM); play_stop_pcm(); } else { play_start_pcm(); sdma_channel_run(DMA_PLAY_CH_NUM); } } /* Return the number of bytes waiting - full L-R sample pairs only */ size_t pcm_get_bytes_waiting(void) { static unsigned long dsa NOCACHEBSS_ATTR; long offs, size; int oldstatus; /* read burst dma source address register in channel context */ sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1); oldstatus = disable_irq_save(); offs = dsa - (unsigned long)dma_play_bd.buf_addr; size = dma_play_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (offs >= 0 && offs < size) { return (size - offs) & ~3; } return 0; } /* Return a pointer to the samples and the number of them in *count */ const void * pcm_play_dma_get_peak_buffer(int *count) { static unsigned long dsa NOCACHEBSS_ATTR; unsigned long addr; long offs, size; int oldstatus; /* read burst dma source address register in channel context */ sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1); oldstatus = disable_irq_save(); addr = dsa; offs = addr - (unsigned long)dma_play_bd.buf_addr; size = dma_play_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (offs >= 0 && offs < size) { *count = (size - offs) >> 2; return (void *)((addr + 2) & ~3); } *count = 0; return NULL; } void * pcm_dma_addr(void *addr) { return (void *)addr_virt_to_phys((unsigned long)addr); } #ifdef HAVE_RECORDING static struct buffer_descriptor dma_rec_bd NOCACHEBSS_ATTR; static void rec_dma_callback(void); static struct channel_descriptor dma_rec_cd = { .bd_count = 1, .callback = rec_dma_callback, .shp_addr = SDMA_PER_ADDR_SSI1_RX1, .wml = SDMA_SSI_RXFIFO_WML*2, .per_type = SDMA_PER_SSI, .tran_type = SDMA_TRAN_PER_2_EMI, .event_id1 = SDMA_REQ_SSI1_RX1, }; static struct dma_data dma_rec_data = { /* Initialize to an unlocked, stopped state */ .locked = 0, .callback_pending = 0, .state = 0 }; static void rec_dma_callback(void) { int status = 0; void *start; size_t size; if (dma_rec_data.locked != 0) { dma_rec_data.callback_pending = dma_rec_data.state; return; /* Callback is locked out */ } if (dma_rec_bd.mode.status & BD_RROR) status = DMA_REC_ERROR_DMA; pcm_rec_more_ready_callback(status, &start, &size); if (size == 0) return; /* Invalidate - buffer must be coherent */ dump_dcache_range(start, size); start = (void *)addr_virt_to_phys((unsigned long)start); dma_rec_bd.buf_addr = start; dma_rec_bd.mode.count = size; dma_rec_bd.mode.command = TRANSFER_16BIT; dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; sdma_channel_run(DMA_REC_CH_NUM); } void pcm_rec_lock(void) { kernel_audio_locking(true); ++dma_rec_data.locked; } void pcm_rec_unlock(void) { if (--dma_rec_data.locked == 0) { if (dma_rec_data.state != 0) { int oldstatus = disable_irq_save(); int pending = dma_rec_data.callback_pending; dma_rec_data.callback_pending = 0; restore_irq(oldstatus); if (pending != 0) rec_dma_callback(); } kernel_audio_locking(false); } } void pcm_rec_dma_stop(void) { SSI_SIER1 &= ~SSI_SIER_RDMAE; /* Disable DMA req. */ /* Set state before pending to prevent race with interrupt */ dma_rec_data.state = 0; /* Stop receiving data */ sdma_channel_stop(DMA_REC_CH_NUM); bitclr32(&SSI_SIER1, SSI_SIER_RDMAE); SSI_SCR1 &= ~SSI_SCR_RE; /* Disable RX */ SSI_SRCR1 &= ~SSI_SRCR_RFEN0; /* Disable RX FIFO */ if (pcm_recording) { /* Stopping: clear buffer info to ensure 0-size readbacks when * stopped */ unsigned long pda = 0; dma_rec_bd.buf_addr = NULL; dma_rec_bd.mode.count = 0; clean_dcache_range(&pda, sizeof(pda)); sdma_write_words(&pda, CHANNEL_CONTEXT_ADDR(DMA_REC_CH_NUM)+0x0a, 1); } /* Clear any pending callback */ dma_rec_data.callback_pending = 0; } void pcm_rec_dma_start(void *addr, size_t size) { pcm_rec_dma_stop(); if (!sdma_channel_reset(DMA_REC_CH_NUM)) return; /* Invalidate - buffer must be coherent */ dump_dcache_range(addr, size); addr = (void *)addr_virt_to_phys((unsigned long)addr); dma_rec_bd.buf_addr = addr; dma_rec_bd.mode.count = size; dma_rec_bd.mode.command = TRANSFER_16BIT; dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; dma_rec_data.state = 1; /* Check callback on unlock */ SSI_SRCR1 |= SSI_SRCR_RFEN0; /* Enable RX FIFO */ /* Ensure clear FIFO */ while (SSI_SFCSR1 & SSI_SFCSR_RFCNT0) SSI_SRX0_1; /* Enable receive */ SSI_SCR1 |= SSI_SCR_RE; SSI_SIER1 |= SSI_SIER_RDMAE; /* Enable DMA req. */ sdma_channel_run(DMA_REC_CH_NUM); } void pcm_rec_dma_close(void) { pcm_rec_dma_stop(); sdma_channel_close(DMA_REC_CH_NUM); } void pcm_rec_dma_init(void) { pcm_rec_dma_stop(); /* Init channel information */ sdma_channel_init(DMA_REC_CH_NUM, &dma_rec_cd, &dma_rec_bd); sdma_channel_set_priority(DMA_REC_CH_NUM, DMA_REC_CH_PRIORITY); } const void * pcm_rec_dma_get_peak_buffer(void) { static unsigned long pda NOCACHEBSS_ATTR; unsigned long buf, end, bufend; int oldstatus; /* read burst dma destination address register in channel context */ sdma_read_words(&pda, CHANNEL_CONTEXT_ADDR(DMA_REC_CH_NUM)+0x0a, 1); oldstatus = disable_irq_save(); end = pda; buf = (unsigned long)dma_rec_bd.buf_addr; bufend = buf + dma_rec_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (end >= buf && end < bufend) return (void *)(end & ~3); return NULL; } #endif /* HAVE_RECORDING */