/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Rockbox driver for iPod LCDs * * Based on code from the ipodlinux project - http://ipodlinux.org/ * Adapted for Rockbox in November 2005 * * Original file: linux/arch/armnommu/mach-ipod/fb.c * * Copyright (c) 2003-2005 Bernard Leach (leachbj@bouncycastle.org) * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "system.h" /* check if number of useconds has past */ static inline bool timer_check(int clock_start, int usecs) { return ((int)(USEC_TIMER - clock_start)) >= usecs; } #if (CONFIG_LCD == LCD_IPOD2BPP) || (CONFIG_LCD == LCD_IPODMINI) /*** hardware configuration ***/ #if CONFIG_CPU == PP5002 #define IPOD_LCD_BASE 0xc0001000 #define IPOD_LCD_BUSY_MASK 0x80000000 #else /* PP5020 */ #define IPOD_LCD_BASE 0x70003000 #define IPOD_LCD_BUSY_MASK 0x00008000 #endif /* LCD command codes for HD66753 */ #define LCD_CMD 0x08 #define LCD_DATA 0x10 #define R_START_OSC 0x00 #define R_DRV_OUTPUT_CONTROL 0x01 #define R_DRV_WAVEFORM_CONTROL 0x02 #define R_POWER_CONTROL 0x03 #define R_CONTRAST_CONTROL 0x04 #define R_ENTRY_MODE 0x05 #define R_ROTATION 0x06 #define R_DISPLAY_CONTROL 0x07 #define R_CURSOR_CONTROL 0x08 #define R_HORIZONTAL_CURSOR_POS 0x0b #define R_VERTICAL_CURSOR_POS 0x0c #define R_1ST_SCR_DRV_POS 0x0d #define R_2ND_SCR_DRV_POS 0x0e #define R_RAM_WRITE_MASK 0x10 #define R_RAM_ADDR_SET 0x11 #define R_RAM_DATA 0x12 /* needed for flip */ static int addr_offset; #if defined(IPOD_MINI) || defined(IPOD_MINI2G) static int pix_offset; #endif static const unsigned char dibits[16] ICONST_ATTR = { 0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F, 0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF }; /* wait for LCD with timeout */ static inline void lcd_wait_write(void) { int start = USEC_TIMER; do { if ((inl(IPOD_LCD_BASE) & 0x8000) == 0) break; } while (timer_check(start, 1000) == 0); } /* send LCD data */ static void lcd_send_data(unsigned data) { lcd_wait_write(); #ifdef IPOD_MINI2G outl((inl(IPOD_LCD_BASE) & ~0x1f00000) | 0x1700000, IPOD_LCD_BASE); outl(data | 0x760000, IPOD_LCD_BASE+8); #else outl(data >> 8, IPOD_LCD_BASE + LCD_DATA); lcd_wait_write(); outl(data & 0xff, IPOD_LCD_BASE + LCD_DATA); #endif } /* send LCD command */ static void lcd_prepare_cmd(unsigned cmd) { lcd_wait_write(); #ifdef IPOD_MINI2G outl((inl(IPOD_LCD_BASE) & ~0x1f00000) | 0x1700000, IPOD_LCD_BASE); outl(cmd | 0x740000, IPOD_LCD_BASE+8); #else outl(0x0, IPOD_LCD_BASE + LCD_CMD); lcd_wait_write(); outl(cmd, IPOD_LCD_BASE + LCD_CMD); #endif } /* send LCD command and data */ static void lcd_cmd_and_data(unsigned cmd, unsigned data) { lcd_prepare_cmd(cmd); lcd_send_data(data); } /* LCD init */ void lcd_init_device(void) { lcd_cmd_and_data(R_DISPLAY_CONTROL, 0x0009); lcd_set_flip(false); lcd_cmd_and_data(R_ENTRY_MODE, 0x0000); #ifdef IPOD_4G outl(inl(0x6000d004) | 0x4, 0x6000d004); /* B02 enable */ outl(inl(0x6000d004) | 0x8, 0x6000d004); /* B03 enable */ outl(inl(0x70000084) | 0x2000000, 0x70000084); /* D01 enable */ outl(inl(0x70000080) | 0x2000000, 0x70000080); /* D01 =1 */ outl(inl(0x6000600c) | 0x20000, 0x6000600c); /* PWM enable */ #endif } /*** hardware configuration ***/ int lcd_default_contrast(void) { #if defined(IPOD_MINI) || defined(IPOD_MINI2G) return 42; #else return 35; #endif } /* Rockbox stores the contrast as 0..63 - we add 64 to it */ void lcd_set_contrast(int val) { if (val < 0) val = 0; else if (val > 63) val = 63; lcd_cmd_and_data(R_CONTRAST_CONTROL, 0x400 | (val + 64)); } void lcd_set_invert_display(bool yesno) { if (yesno) lcd_cmd_and_data(R_DISPLAY_CONTROL, 0x0023); else lcd_cmd_and_data(R_DISPLAY_CONTROL, 0x0009); } /* turn the display upside down (call lcd_update() afterwards) */ void lcd_set_flip(bool yesno) { #if defined(IPOD_MINI) || defined(IPOD_MINI2G) if (yesno) { /* 168x112, inverse COM order */ lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x020d); lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x8316); /* 22..131 */ addr_offset = (22 << 5) | (20 - 4); pix_offset = -2; } else { /* 168x112, inverse SEG order */ lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x010d); lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x6d00); /* 0..109 */ addr_offset = 20; pix_offset = 0; } #else if (yesno) { /* 168x128, inverse SEG & COM order */ lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x030f); lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x8304); /* 4..131 */ addr_offset = (4 << 5) | (20 - 1); } else { /* 168x128 */ lcd_cmd_and_data(R_DRV_OUTPUT_CONTROL, 0x000f); lcd_cmd_and_data(R_1ST_SCR_DRV_POS, 0x7f00); /* 0..127 */ addr_offset = 20; } #endif } /*** update functions ***/ /* Performance function that works with an external buffer note that x, bwidtht and stride are in 8-pixel units! */ void lcd_blit(const unsigned char* data, int bx, int y, int bwidth, int height, int stride) { const unsigned char *src, *src_end; while (height--) { src = data; src_end = data + bwidth; lcd_cmd_and_data(R_RAM_ADDR_SET, (y++ << 5) + addr_offset - bx); lcd_prepare_cmd(R_RAM_DATA); do { unsigned byte = *src++; lcd_send_data((dibits[byte>>4] << 8) | dibits[byte&0x0f]); } while (src < src_end); data += stride; } } void lcd_update_rect(int x, int y, int width, int height) { int xmax, ymax; if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; if (width <= 0) return; ymax = y + height - 1; if (ymax >= LCD_HEIGHT) ymax = LCD_HEIGHT - 1; #if defined(IPOD_MINI) || defined(IPOD_MINI2G) x += pix_offset; #endif /* writing is done in 16-bit units (8 pixels) */ xmax = (x + width - 1) >> 3; x >>= 3; width = xmax - x + 1; for (; y <= ymax; y++) { unsigned char *data, *data_end; lcd_cmd_and_data(R_RAM_ADDR_SET, (y << 5) + addr_offset - x); lcd_prepare_cmd(R_RAM_DATA); data = &lcd_framebuffer[y][2*x]; data_end = data + 2 * width; #if defined(IPOD_MINI) || defined(IPOD_MINI2G) if (pix_offset == -2) { unsigned cur_word = *data++; do { cur_word = (cur_word << 8) | *data++; cur_word = (cur_word << 8) | *data++; lcd_send_data((cur_word >> 4) & 0xffff); } while (data <= data_end); } else #endif { do { unsigned highbyte = *data++; lcd_send_data((highbyte << 8) | *data++); } while (data < data_end); } } } /* Update the display. */ void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); } #else #define IPOD_LCD_BASE 0x70008a0c #define IPOD_LCD_BUSY_MASK 0x80000000 /* LCD command codes for HD66789R */ #define LCD_CNTL_RAM_ADDR_SET 0x21 #define LCD_CNTL_WRITE_TO_GRAM 0x22 #define LCD_CNTL_HORIZ_RAM_ADDR_POS 0x44 #define LCD_CNTL_VERT_RAM_ADDR_POS 0x45 /*** globals ***/ static int lcd_type = 1; /* 0 = "old" Color/Photo, 1 = "new" Color & Nano */ static void lcd_wait_write(void) { if ((inl(IPOD_LCD_BASE) & IPOD_LCD_BUSY_MASK) != 0) { int start = USEC_TIMER; do { if ((inl(IPOD_LCD_BASE) & IPOD_LCD_BUSY_MASK) == 0) break; } while (timer_check(start, 1000) == 0); } } static void lcd_send_lo(int v) { lcd_wait_write(); outl(v | 0x80000000, IPOD_LCD_BASE); } static void lcd_send_hi(int v) { lcd_wait_write(); outl(v | 0x81000000, IPOD_LCD_BASE); } static void lcd_cmd_data(int cmd, int data) { if (lcd_type == 0) { lcd_send_lo(cmd); lcd_send_lo(data); } else { lcd_send_lo(0x0); lcd_send_lo(cmd); lcd_send_hi((data >> 8) & 0xff); lcd_send_hi(data & 0xff); } } /*** hardware configuration ***/ void lcd_set_contrast(int val) { /* TODO: Implement lcd_set_contrast() */ (void)val; } void lcd_set_invert_display(bool yesno) { /* TODO: Implement lcd_set_invert_display() */ (void)yesno; } /* turn the display upside down (call lcd_update() afterwards) */ void lcd_set_flip(bool yesno) { /* TODO: Implement lcd_set_flip() */ (void)yesno; } /* LCD init */ void lcd_init_device(void) { #if CONFIG_LCD == LCD_IPODCOLOR if (ipod_hw_rev == 0x60000) { lcd_type = 0; } else { int gpio_a01, gpio_a04; /* A01 */ gpio_a01 = (inl(0x6000D030) & 0x2) >> 1; /* A04 */ gpio_a04 = (inl(0x6000D030) & 0x10) >> 4; if (((gpio_a01 << 1) | gpio_a04) == 0 || ((gpio_a01 << 1) | gpio_a04) == 2) { lcd_type = 0; } else { lcd_type = 1; } } outl(inl(0x6000d004) | 0x4, 0x6000d004); /* B02 enable */ outl(inl(0x6000d004) | 0x8, 0x6000d004); /* B03 enable */ outl(inl(0x70000084) | 0x2000000, 0x70000084); /* D01 enable */ outl(inl(0x70000080) | 0x2000000, 0x70000080); /* D01 =1 */ outl(inl(0x6000600c) | 0x20000, 0x6000600c); /* PWM enable */ #elif CONFIG_LCD == LCD_IPODNANO /* iPodLinux doesn't appear have any LCD init code for the Nano */ #endif } /*** update functions ***/ /* Performance function that works with an external buffer note that by and bheight are in 4-pixel units! */ void lcd_blit(const fb_data* data, int x, int by, int width, int bheight, int stride) { /* TODO: Implement lcd_blit() */ (void)data; (void)x; (void)by; (void)width; (void)bheight; (void)stride; } #define CSUB_X 2 #define CSUB_Y 2 #define RYFAC (31*257) #define GYFAC (63*257) #define BYFAC (31*257) #define RVFAC 11170 /* 31 * 257 * 1.402 */ #define GVFAC (-11563) /* 63 * 257 * -0.714136 */ #define GUFAC (-5572) /* 63 * 257 * -0.344136 */ #define BUFAC 14118 /* 31 * 257 * 1.772 */ #define ROUNDOFFS (127*257) /* Performance function to blit a YUV bitmap directly to the LCD */ void lcd_yuv_blit(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { int h; int y0, x0, y1, x1; width = (width + 1) & ~1; /* calculate the drawing region */ #if CONFIG_LCD == LCD_IPODNANO y0 = x; /* start horiz */ x0 = y; /* start vert */ y1 = (x + width) - 1; /* max horiz */ x1 = (y + height) - 1; /* max vert */ #elif CONFIG_LCD == LCD_IPODCOLOR y0 = y; /* start vert */ x0 = (LCD_WIDTH - 1) - x; /* start horiz */ y1 = (y + height) - 1; /* end vert */ x1 = (x0 - width) + 1; /* end horiz */ #endif /* setup the drawing region */ if (lcd_type == 0) { lcd_cmd_data(0x12, y0); /* start vert */ lcd_cmd_data(0x13, x0); /* start horiz */ lcd_cmd_data(0x15, y1); /* end vert */ lcd_cmd_data(0x16, x1); /* end horiz */ } else { /* swap max horiz < start horiz */ if (y1 < y0) { int t; t = y0; y0 = y1; y1 = t; } /* swap max vert < start vert */ if (x1 < x0) { int t; t = x0; x0 = x1; x1 = t; } /* max horiz << 8 | start horiz */ lcd_cmd_data(LCD_CNTL_HORIZ_RAM_ADDR_POS, (y1 << 8) | y0); /* max vert << 8 | start vert */ lcd_cmd_data(LCD_CNTL_VERT_RAM_ADDR_POS, (x1 << 8) | x0); /* start vert = max vert */ #if CONFIG_LCD == LCD_IPODCOLOR x0 = x1; #endif /* position cursor (set AD0-AD15) */ /* start vert << 8 | start horiz */ lcd_cmd_data(LCD_CNTL_RAM_ADDR_SET, ((x0 << 8) | y0)); /* start drawing */ lcd_send_lo(0x0); lcd_send_lo(LCD_CNTL_WRITE_TO_GRAM); } h=0; while (1) { int pixels_to_write; const unsigned char *ysrc = src[0] + stride * src_y + src_x; const unsigned char *row_end = ysrc + width; int y, u, v; int red, green, blue; unsigned rbits, gbits, bbits; fb_data pixel1,pixel2; if (h==0) { while ((inl(0x70008a20) & 0x4000000) == 0); outl(0x0, 0x70008a24); if (height == 0) break; pixels_to_write = (width * height) * 2; h = height; /* calculate how much we can do in one go */ if (pixels_to_write > 64000) { h = (64000/2) / width; pixels_to_write = (width * h) * 2; } height -= h; outl(0x10000080, 0x70008a20); outl((pixels_to_write - 1) | 0xc0010000, 0x70008a24); outl(0x34000000, 0x70008a20); } /* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */ const unsigned char *usrc = src[1] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); const unsigned char *vsrc = src[2] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); int rc, gc, bc; u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; do { y = *ysrc++; red = RYFAC * y + rc; green = GYFAC * y + gc; blue = BYFAC * y + bc; if ((unsigned)red > (RYFAC*255+ROUNDOFFS)) { if (red < 0) red = 0; else red = (RYFAC*255+ROUNDOFFS); } if ((unsigned)green > (GYFAC*255+ROUNDOFFS)) { if (green < 0) green = 0; else green = (GYFAC*255+ROUNDOFFS); } if ((unsigned)blue > (BYFAC*255+ROUNDOFFS)) { if (blue < 0) blue = 0; else blue = (BYFAC*255+ROUNDOFFS); } rbits = ((unsigned)red) >> 16 ; gbits = ((unsigned)green) >> 16 ; bbits = ((unsigned)blue) >> 16 ; pixel1 = swap16((rbits << 11) | (gbits << 5) | bbits); y = *ysrc++; red = RYFAC * y + rc; green = GYFAC * y + gc; blue = BYFAC * y + bc; if ((unsigned)red > (RYFAC*255+ROUNDOFFS)) { if (red < 0) red = 0; else red = (RYFAC*255+ROUNDOFFS); } if ((unsigned)green > (GYFAC*255+ROUNDOFFS)) { if (green < 0) green = 0; else green = (GYFAC*255+ROUNDOFFS); } if ((unsigned)blue > (BYFAC*255+ROUNDOFFS)) { if (blue < 0) blue = 0; else blue = (BYFAC*255+ROUNDOFFS); } rbits = ((unsigned)red) >> 16 ; gbits = ((unsigned)green) >> 16 ; bbits = ((unsigned)blue) >> 16 ; pixel2 = swap16((rbits << 11) | (gbits << 5) | bbits); u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; while ((inl(0x70008a20) & 0x1000000) == 0); /* output 2 pixels */ outl((pixel2<<16)|pixel1, 0x70008b00); } while (ysrc < row_end); src_y++; h--; } while ((inl(0x70008a20) & 0x4000000) == 0); outl(0x0, 0x70008a24); } /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { int y0, x0, y1, x1; int newx,newwidth; unsigned long *addr = (unsigned long *)lcd_framebuffer; /* Ensure x and width are both even - so we can read 32-bit aligned data from lcd_framebuffer */ newx=x&~1; newwidth=width&~1; if (newx+newwidth < x+width) { newwidth+=2; } x=newx; width=newwidth; /* calculate the drawing region */ #if CONFIG_LCD == LCD_IPODNANO y0 = x; /* start horiz */ x0 = y; /* start vert */ y1 = (x + width) - 1; /* max horiz */ x1 = (y + height) - 1; /* max vert */ #elif CONFIG_LCD == LCD_IPODCOLOR y0 = y; /* start vert */ x0 = (LCD_WIDTH - 1) - x; /* start horiz */ y1 = (y + height) - 1; /* end vert */ x1 = (x0 - width) + 1; /* end horiz */ #endif /* setup the drawing region */ if (lcd_type == 0) { lcd_cmd_data(0x12, y0); /* start vert */ lcd_cmd_data(0x13, x0); /* start horiz */ lcd_cmd_data(0x15, y1); /* end vert */ lcd_cmd_data(0x16, x1); /* end horiz */ } else { /* swap max horiz < start horiz */ if (y1 < y0) { int t; t = y0; y0 = y1; y1 = t; } /* swap max vert < start vert */ if (x1 < x0) { int t; t = x0; x0 = x1; x1 = t; } /* max horiz << 8 | start horiz */ lcd_cmd_data(LCD_CNTL_HORIZ_RAM_ADDR_POS, (y1 << 8) | y0); /* max vert << 8 | start vert */ lcd_cmd_data(LCD_CNTL_VERT_RAM_ADDR_POS, (x1 << 8) | x0); /* start vert = max vert */ #if CONFIG_LCD == LCD_IPODCOLOR x0 = x1; #endif /* position cursor (set AD0-AD15) */ /* start vert << 8 | start horiz */ lcd_cmd_data(LCD_CNTL_RAM_ADDR_SET, ((x0 << 8) | y0)); /* start drawing */ lcd_send_lo(0x0); lcd_send_lo(LCD_CNTL_WRITE_TO_GRAM); } addr = (unsigned long*)&lcd_framebuffer[y][x]; while (height > 0) { int c, r; int h, pixels_to_write; pixels_to_write = (width * height) * 2; h = height; /* calculate how much we can do in one go */ if (pixels_to_write > 64000) { h = (64000/2) / width; pixels_to_write = (width * h) * 2; } outl(0x10000080, 0x70008a20); outl((pixels_to_write - 1) | 0xc0010000, 0x70008a24); outl(0x34000000, 0x70008a20); /* for each row */ for (r = 0; r < h; r++) { /* for each column */ for (c = 0; c < width; c += 2) { while ((inl(0x70008a20) & 0x1000000) == 0); /* output 2 pixels */ outl(*(addr++), 0x70008b00); } addr += (LCD_WIDTH - width)/2; } while ((inl(0x70008a20) & 0x4000000) == 0); outl(0x0, 0x70008a24); height = height - h; } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); } #endif