//////////////////////////////////////////////////////////////////////////// // **** WAVPACK **** // // Hybrid Lossless Wavefile Compressor // // Copyright (c) 1998 - 2004 Conifer Software. // // All Rights Reserved. // // Distributed under the BSD Software License (see license.txt) // //////////////////////////////////////////////////////////////////////////// // unpack.c // This module actually handles the decompression of the audio data, except // for the entropy decoding which is handled by the words.c module. For // maximum efficiency, the conversion is isolated to tight loops that handle // an entire buffer. #include "wavpack.h" #include #include static void strcpy_loc (char *dst, char *src) { while ((*dst++ = *src++) != 0); } #define LOSSY_MUTE ///////////////////////////// executable code //////////////////////////////// // This function initializes everything required to unpack a WavPack block // and must be called before unpack_samples() is called to obtain audio data. // It is assumed that the WavpackHeader has been read into the wps->wphdr // (in the current WavpackStream). This is where all the metadata blocks are // scanned up to the one containing the audio bitstream. int unpack_init (WavpackContext *wpc) { WavpackStream *wps = &wpc->stream; WavpackMetadata wpmd; if (wps->wphdr.block_samples && wps->wphdr.block_index != (ulong) -1) wps->sample_index = wps->wphdr.block_index; wps->mute_error = FALSE; wps->crc = 0xffffffff; CLEAR (wps->wvbits); CLEAR (wps->decorr_passes); CLEAR (wps->w); while (read_metadata_buff (wpc, &wpmd)) { if (!process_metadata (wpc, &wpmd)) { strcpy_loc (wpc->error_message, "invalid metadata!"); return FALSE; } if (wpmd.id == ID_WV_BITSTREAM) break; } if (wps->wphdr.block_samples && !bs_is_open (&wps->wvbits)) { strcpy_loc (wpc->error_message, "invalid WavPack file!"); return FALSE; } if (wps->wphdr.block_samples) { if ((wps->wphdr.flags & INT32_DATA) && wps->int32_sent_bits) wpc->lossy_blocks = TRUE; if ((wps->wphdr.flags & FLOAT_DATA) && wps->float_flags & (FLOAT_EXCEPTIONS | FLOAT_ZEROS_SENT | FLOAT_SHIFT_SENT | FLOAT_SHIFT_SAME)) wpc->lossy_blocks = TRUE; } return TRUE; } // This function initialzes the main bitstream for audio samples, which must // be in the "wv" file. int init_wv_bitstream (WavpackContext *wpc, WavpackMetadata *wpmd) { WavpackStream *wps = &wpc->stream; if (wpmd->data) bs_open_read (&wps->wvbits, wpmd->data, (char *) wpmd->data + wpmd->byte_length, NULL, 0); else if (wpmd->byte_length) bs_open_read (&wps->wvbits, wpc->read_buffer, wpc->read_buffer + sizeof (wpc->read_buffer), wpc->infile, wpmd->byte_length + (wpmd->byte_length & 1)); return TRUE; } // Read decorrelation terms from specified metadata block into the // decorr_passes array. The terms range from -3 to 8, plus 17 & 18; // other values are reserved and generate errors for now. The delta // ranges from 0 to 7 with all values valid. Note that the terms are // stored in the opposite order in the decorr_passes array compared // to packing. int read_decorr_terms (WavpackStream *wps, WavpackMetadata *wpmd) { int termcnt = wpmd->byte_length; uchar *byteptr = wpmd->data; struct decorr_pass *dpp; if (termcnt > MAX_NTERMS) return FALSE; wps->num_terms = termcnt; for (dpp = wps->decorr_passes + termcnt - 1; termcnt--; dpp--) { dpp->term = (int)(*byteptr & 0x1f) - 5; dpp->delta = (*byteptr++ >> 5) & 0x7; if (!dpp->term || dpp->term < -3 || (dpp->term > MAX_TERM && dpp->term < 17) || dpp->term > 18) return FALSE; } return TRUE; } // Read decorrelation weights from specified metadata block into the // decorr_passes array. The weights range +/-1024, but are rounded and // truncated to fit in signed chars for metadata storage. Weights are // separate for the two channels and are specified from the "last" term // (first during encode). Unspecified weights are set to zero. int read_decorr_weights (WavpackStream *wps, WavpackMetadata *wpmd) { int termcnt = wpmd->byte_length, tcount; char *byteptr = wpmd->data; struct decorr_pass *dpp; if (!(wps->wphdr.flags & MONO_FLAG)) termcnt /= 2; if (termcnt > wps->num_terms) return FALSE; for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) dpp->weight_A = dpp->weight_B = 0; while (--dpp >= wps->decorr_passes && termcnt--) { dpp->weight_A = restore_weight (*byteptr++); if (!(wps->wphdr.flags & MONO_FLAG)) dpp->weight_B = restore_weight (*byteptr++); } return TRUE; } // Read decorrelation samples from specified metadata block into the // decorr_passes array. The samples are signed 32-bit values, but are // converted to signed log2 values for storage in metadata. Values are // stored for both channels and are specified from the "last" term // (first during encode) with unspecified samples set to zero. The // number of samples stored varies with the actual term value, so // those must obviously come first in the metadata. int read_decorr_samples (WavpackStream *wps, WavpackMetadata *wpmd) { uchar *byteptr = wpmd->data; uchar *endptr = byteptr + wpmd->byte_length; struct decorr_pass *dpp; int tcount; for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) { CLEAR (dpp->samples_A); CLEAR (dpp->samples_B); } if (wps->wphdr.version == 0x402 && (wps->wphdr.flags & HYBRID_FLAG)) { byteptr += 2; if (!(wps->wphdr.flags & MONO_FLAG)) byteptr += 2; } while (dpp-- > wps->decorr_passes && byteptr < endptr) if (dpp->term > MAX_TERM) { dpp->samples_A [0] = exp2s ((short)(byteptr [0] + (byteptr [1] << 8))); dpp->samples_A [1] = exp2s ((short)(byteptr [2] + (byteptr [3] << 8))); byteptr += 4; if (!(wps->wphdr.flags & MONO_FLAG)) { dpp->samples_B [0] = exp2s ((short)(byteptr [0] + (byteptr [1] << 8))); dpp->samples_B [1] = exp2s ((short)(byteptr [2] + (byteptr [3] << 8))); byteptr += 4; } } else if (dpp->term < 0) { dpp->samples_A [0] = exp2s ((short)(byteptr [0] + (byteptr [1] << 8))); dpp->samples_B [0] = exp2s ((short)(byteptr [2] + (byteptr [3] << 8))); byteptr += 4; } else { int m = 0, cnt = dpp->term; while (cnt--) { dpp->samples_A [m] = exp2s ((short)(byteptr [0] + (byteptr [1] << 8))); byteptr += 2; if (!(wps->wphdr.flags & MONO_FLAG)) { dpp->samples_B [m] = exp2s ((short)(byteptr [0] + (byteptr [1] << 8))); byteptr += 2; } m++; } } return byteptr == endptr; } // Read the int32 data from the specified metadata into the specified stream. // This data is used for integer data that has more than 24 bits of magnitude // or, in some cases, used to eliminate redundant bits from any audio stream. int read_int32_info (WavpackStream *wps, WavpackMetadata *wpmd) { int bytecnt = wpmd->byte_length; char *byteptr = wpmd->data; if (bytecnt != 4) return FALSE; wps->int32_sent_bits = *byteptr++; wps->int32_zeros = *byteptr++; wps->int32_ones = *byteptr++; wps->int32_dups = *byteptr; return TRUE; } // Read multichannel information from metadata. The first byte is the total // number of channels and the following bytes represent the channel_mask // as described for Microsoft WAVEFORMATEX. int read_channel_info (WavpackContext *wpc, WavpackMetadata *wpmd) { int bytecnt = wpmd->byte_length, shift = 0; char *byteptr = wpmd->data; ulong mask = 0; if (!bytecnt || bytecnt > 5) return FALSE; wpc->config.num_channels = *byteptr++; while (--bytecnt) { mask |= (ulong) *byteptr++ << shift; shift += 8; } wpc->config.channel_mask = mask; return TRUE; } // Read configuration information from metadata. int read_config_info (WavpackContext *wpc, WavpackMetadata *wpmd) { int bytecnt = wpmd->byte_length; uchar *byteptr = wpmd->data; if (bytecnt >= 3) { wpc->config.flags &= 0xff; wpc->config.flags |= (long) *byteptr++ << 8; wpc->config.flags |= (long) *byteptr++ << 16; wpc->config.flags |= (long) *byteptr << 24; } return TRUE; } // This monster actually unpacks the WavPack bitstream(s) into the specified // buffer as 32-bit integers or floats (depending on orignal data). Lossy // samples will be clipped to their original limits (i.e. 8-bit samples are // clipped to -128/+127) but are still returned in longs. It is up to the // caller to potentially reformat this for the final output including any // multichannel distribution, block alignment or endian compensation. The // function unpack_init() must have been called and the entire WavPack block // must still be visible (although wps->blockbuff will not be accessed again). // For maximum clarity, the function is broken up into segments that handle // various modes. This makes for a few extra infrequent flag checks, but // makes the code easier to follow because the nesting does not become so // deep. For maximum efficiency, the conversion is isolated to tight loops // that handle an entire buffer. The function returns the total number of // samples unpacked, which can be less than the number requested if an error // occurs or the end of the block is reached. #if defined(CPU_COLDFIRE) && !defined(SIMULATOR) extern void decorr_stereo_pass_cont_mcf5249 (struct decorr_pass *dpp, long *buffer, long sample_count); #else static void decorr_stereo_pass_cont (struct decorr_pass *dpp, long *buffer, long sample_count); #endif static void decorr_mono_pass (struct decorr_pass *dpp, long *buffer, long sample_count); static void decorr_stereo_pass (struct decorr_pass *dpp, long *buffer, long sample_count); static void fixup_samples (WavpackStream *wps, long *buffer, ulong sample_count); long unpack_samples (WavpackContext *wpc, long *buffer, ulong sample_count) { WavpackStream *wps = &wpc->stream; ulong flags = wps->wphdr.flags, crc = wps->crc, i; long mute_limit = (1L << ((flags & MAG_MASK) >> MAG_LSB)) + 2; struct decorr_pass *dpp; long *bptr, *eptr; int tcount; if (wps->sample_index + sample_count > wps->wphdr.block_index + wps->wphdr.block_samples) sample_count = wps->wphdr.block_index + wps->wphdr.block_samples - wps->sample_index; if (wps->mute_error) { memset (buffer, 0, sample_count * (flags & MONO_FLAG ? 4 : 8)); wps->sample_index += sample_count; return sample_count; } if (flags & HYBRID_FLAG) mute_limit *= 2; ///////////////////// handle version 4 mono data ///////////////////////// if (flags & MONO_FLAG) { eptr = buffer + sample_count; i = get_words (buffer, sample_count, flags, &wps->w, &wps->wvbits); for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) decorr_mono_pass (dpp, buffer, sample_count); for (bptr = buffer; bptr < eptr; ++bptr) { if (labs (bptr [0]) > mute_limit) { i = bptr - buffer; break; } crc = crc * 3 + bptr [0]; } } //////////////////// handle version 4 stereo data //////////////////////// else { eptr = buffer + (sample_count * 2); i = get_words (buffer, sample_count, flags, &wps->w, &wps->wvbits); if (sample_count < 16) for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) decorr_stereo_pass (dpp, buffer, sample_count); else for (tcount = wps->num_terms, dpp = wps->decorr_passes; tcount--; dpp++) { decorr_stereo_pass (dpp, buffer, 8); #if defined(CPU_COLDFIRE) && !defined(SIMULATOR) decorr_stereo_pass_cont_mcf5249 (dpp, buffer + 16, sample_count - 8); #else decorr_stereo_pass_cont (dpp, buffer + 16, sample_count - 8); #endif } if (flags & JOINT_STEREO) for (bptr = buffer; bptr < eptr; bptr += 2) { bptr [0] += (bptr [1] -= (bptr [0] >> 1)); if (labs (bptr [0]) > mute_limit || labs (bptr [1]) > mute_limit) { i = (bptr - buffer) / 2; break; } crc = (crc * 3 + bptr [0]) * 3 + bptr [1]; } else for (bptr = buffer; bptr < eptr; bptr += 2) { if (labs (bptr [0]) > mute_limit || labs (bptr [1]) > mute_limit) { i = (bptr - buffer) / 2; break; } crc = (crc * 3 + bptr [0]) * 3 + bptr [1]; } } if (i != sample_count) { memset (buffer, 0, sample_count * (flags & MONO_FLAG ? 4 : 8)); wps->mute_error = TRUE; i = sample_count; } fixup_samples (wps, buffer, i); if (flags & FLOAT_DATA) float_normalize (buffer, (flags & MONO_FLAG) ? i : i * 2, 127 - wps->float_norm_exp + wpc->norm_offset); wps->sample_index += i; wps->crc = crc; return i; } static void decorr_stereo_pass (struct decorr_pass *dpp, long *buffer, long sample_count) { long delta = dpp->delta, weight_A = dpp->weight_A, weight_B = dpp->weight_B; long *bptr, *eptr = buffer + (sample_count * 2), sam_A, sam_B; int m, k; switch (dpp->term) { case 17: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1]; dpp->samples_A [1] = dpp->samples_A [0]; dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [0]; sam_A = 2 * dpp->samples_B [0] - dpp->samples_B [1]; dpp->samples_B [1] = dpp->samples_B [0]; dpp->samples_B [0] = apply_weight (weight_B, sam_A) + bptr [1]; update_weight (weight_B, delta, sam_A, bptr [1]); bptr [1] = dpp->samples_B [0]; } break; case 18: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1; dpp->samples_A [1] = dpp->samples_A [0]; dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [0]; sam_A = (3 * dpp->samples_B [0] - dpp->samples_B [1]) >> 1; dpp->samples_B [1] = dpp->samples_B [0]; dpp->samples_B [0] = apply_weight (weight_B, sam_A) + bptr [1]; update_weight (weight_B, delta, sam_A, bptr [1]); bptr [1] = dpp->samples_B [0]; } break; default: for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr += 2) { sam_A = dpp->samples_A [m]; dpp->samples_A [k] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [k]; sam_A = dpp->samples_B [m]; dpp->samples_B [k] = apply_weight (weight_B, sam_A) + bptr [1]; update_weight (weight_B, delta, sam_A, bptr [1]); bptr [1] = dpp->samples_B [k]; m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { long temp_samples [MAX_TERM]; memcpy (temp_samples, dpp->samples_A, sizeof (dpp->samples_A)); for (k = 0; k < MAX_TERM; k++, m++) dpp->samples_A [k] = temp_samples [m & (MAX_TERM - 1)]; memcpy (temp_samples, dpp->samples_B, sizeof (dpp->samples_B)); for (k = 0; k < MAX_TERM; k++, m++) dpp->samples_B [k] = temp_samples [m & (MAX_TERM - 1)]; } break; case -1: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = bptr [0] + apply_weight (weight_A, dpp->samples_A [0]); update_weight_clip (weight_A, delta, dpp->samples_A [0], bptr [0]); bptr [0] = sam_A; dpp->samples_A [0] = bptr [1] + apply_weight (weight_B, sam_A); update_weight_clip (weight_B, delta, sam_A, bptr [1]); bptr [1] = dpp->samples_A [0]; } break; case -2: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_B = bptr [1] + apply_weight (weight_B, dpp->samples_B [0]); update_weight_clip (weight_B, delta, dpp->samples_B [0], bptr [1]); bptr [1] = sam_B; dpp->samples_B [0] = bptr [0] + apply_weight (weight_A, sam_B); update_weight_clip (weight_A, delta, sam_B, bptr [0]); bptr [0] = dpp->samples_B [0]; } break; case -3: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = bptr [0] + apply_weight (weight_A, dpp->samples_A [0]); update_weight_clip (weight_A, delta, dpp->samples_A [0], bptr [0]); sam_B = bptr [1] + apply_weight (weight_B, dpp->samples_B [0]); update_weight_clip (weight_B, delta, dpp->samples_B [0], bptr [1]); bptr [0] = dpp->samples_B [0] = sam_A; bptr [1] = dpp->samples_A [0] = sam_B; } break; } dpp->weight_A = weight_A; dpp->weight_B = weight_B; } #if !defined(CPU_COLDFIRE) || defined(SIMULATOR) static void decorr_stereo_pass_cont (struct decorr_pass *dpp, long *buffer, long sample_count) { long delta = dpp->delta, weight_A = dpp->weight_A, weight_B = dpp->weight_B; long *bptr, *tptr, *eptr = buffer + (sample_count * 2), sam_A, sam_B; int k, i; switch (dpp->term) { case 17: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = 2 * bptr [-2] - bptr [-4]; bptr [0] = apply_weight (weight_A, sam_A) + (sam_B = bptr [0]); update_weight (weight_A, delta, sam_A, sam_B); sam_A = 2 * bptr [-1] - bptr [-3]; bptr [1] = apply_weight (weight_B, sam_A) + (sam_B = bptr [1]); update_weight (weight_B, delta, sam_A, sam_B); } dpp->samples_B [0] = bptr [-1]; dpp->samples_A [0] = bptr [-2]; dpp->samples_B [1] = bptr [-3]; dpp->samples_A [1] = bptr [-4]; break; case 18: for (bptr = buffer; bptr < eptr; bptr += 2) { sam_A = (3 * bptr [-2] - bptr [-4]) >> 1; bptr [0] = apply_weight (weight_A, sam_A) + (sam_B = bptr [0]); update_weight (weight_A, delta, sam_A, sam_B); sam_A = (3 * bptr [-1] - bptr [-3]) >> 1; bptr [1] = apply_weight (weight_B, sam_A) + (sam_B = bptr [1]); update_weight (weight_B, delta, sam_A, sam_B); } dpp->samples_B [0] = bptr [-1]; dpp->samples_A [0] = bptr [-2]; dpp->samples_B [1] = bptr [-3]; dpp->samples_A [1] = bptr [-4]; break; default: for (bptr = buffer, tptr = buffer - (dpp->term * 2); bptr < eptr; bptr += 2, tptr += 2) { bptr [0] = apply_weight (weight_A, tptr [0]) + (sam_A = bptr [0]); update_weight (weight_A, delta, tptr [0], sam_A); bptr [1] = apply_weight (weight_B, tptr [1]) + (sam_A = bptr [1]); update_weight (weight_B, delta, tptr [1], sam_A); } for (k = dpp->term - 1, i = 8; i--; k--) { dpp->samples_B [k & (MAX_TERM - 1)] = *--bptr; dpp->samples_A [k & (MAX_TERM - 1)] = *--bptr; } break; case -1: for (bptr = buffer; bptr < eptr; bptr += 2) { bptr [0] = apply_weight (weight_A, bptr [-1]) + (sam_A = bptr [0]); update_weight_clip (weight_A, delta, bptr [-1], sam_A); bptr [1] = apply_weight (weight_B, bptr [0]) + (sam_A = bptr [1]); update_weight_clip (weight_B, delta, bptr [0], sam_A); } dpp->samples_A [0] = bptr [-1]; break; case -2: for (bptr = buffer; bptr < eptr; bptr += 2) { bptr [1] = apply_weight (weight_B, bptr [-2]) + (sam_A = bptr [1]); update_weight_clip (weight_B, delta, bptr [-2], sam_A); bptr [0] = apply_weight (weight_A, bptr [1]) + (sam_A = bptr [0]); update_weight_clip (weight_A, delta, bptr [1], sam_A); } dpp->samples_B [0] = bptr [-2]; break; case -3: for (bptr = buffer; bptr < eptr; bptr += 2) { bptr [0] = apply_weight (weight_A, bptr [-1]) + (sam_A = bptr [0]); update_weight_clip (weight_A, delta, bptr [-1], sam_A); bptr [1] = apply_weight (weight_B, bptr [-2]) + (sam_A = bptr [1]); update_weight_clip (weight_B, delta, bptr [-2], sam_A); } dpp->samples_A [0] = bptr [-1]; dpp->samples_B [0] = bptr [-2]; break; } dpp->weight_A = weight_A; dpp->weight_B = weight_B; } #endif static void decorr_mono_pass (struct decorr_pass *dpp, long *buffer, long sample_count) { long delta = dpp->delta, weight_A = dpp->weight_A; long *bptr, *eptr = buffer + sample_count, sam_A; int m, k; switch (dpp->term) { case 17: for (bptr = buffer; bptr < eptr; bptr++) { sam_A = 2 * dpp->samples_A [0] - dpp->samples_A [1]; dpp->samples_A [1] = dpp->samples_A [0]; dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [0]; } break; case 18: for (bptr = buffer; bptr < eptr; bptr++) { sam_A = (3 * dpp->samples_A [0] - dpp->samples_A [1]) >> 1; dpp->samples_A [1] = dpp->samples_A [0]; dpp->samples_A [0] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [0]; } break; default: for (m = 0, k = dpp->term & (MAX_TERM - 1), bptr = buffer; bptr < eptr; bptr++) { sam_A = dpp->samples_A [m]; dpp->samples_A [k] = apply_weight (weight_A, sam_A) + bptr [0]; update_weight (weight_A, delta, sam_A, bptr [0]); bptr [0] = dpp->samples_A [k]; m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { long temp_samples [MAX_TERM]; memcpy (temp_samples, dpp->samples_A, sizeof (dpp->samples_A)); for (k = 0; k < MAX_TERM; k++, m++) dpp->samples_A [k] = temp_samples [m & (MAX_TERM - 1)]; } break; } dpp->weight_A = weight_A; } // This is a helper function for unpack_samples() that applies several final // operations. First, if the data is 32-bit float data, then that conversion // is done in the float.c module (whether lossy or lossless) and we return. // Otherwise, if the extended integer data applies, then that operation is // executed first. If the unpacked data is lossy (and not corrected) then // it is clipped and shifted in a single operation. Otherwise, if it's // lossless then the last step is to apply the final shift (if any). static void fixup_samples (WavpackStream *wps, long *buffer, ulong sample_count) { ulong flags = wps->wphdr.flags; int shift = (flags & SHIFT_MASK) >> SHIFT_LSB; if (flags & FLOAT_DATA) { float_values (wps, buffer, (flags & MONO_FLAG) ? sample_count : sample_count * 2); return; } if (flags & INT32_DATA) { ulong count = (flags & MONO_FLAG) ? sample_count : sample_count * 2; int sent_bits = wps->int32_sent_bits, zeros = wps->int32_zeros; int ones = wps->int32_ones, dups = wps->int32_dups; // ulong mask = (1 << sent_bits) - 1; long *dptr = buffer; if (!(flags & HYBRID_FLAG) && !sent_bits && (zeros + ones + dups)) while (count--) { if (zeros) *dptr <<= zeros; else if (ones) *dptr = ((*dptr + 1) << ones) - 1; else if (dups) *dptr = ((*dptr + (*dptr & 1)) << dups) - (*dptr & 1); dptr++; } else shift += zeros + sent_bits + ones + dups; } if (flags & HYBRID_FLAG) { long min_value, max_value, min_shifted, max_shifted; switch (flags & BYTES_STORED) { case 0: min_shifted = (min_value = -128 >> shift) << shift; max_shifted = (max_value = 127 >> shift) << shift; break; case 1: min_shifted = (min_value = -32768 >> shift) << shift; max_shifted = (max_value = 32767 >> shift) << shift; break; case 2: min_shifted = (min_value = -8388608 >> shift) << shift; max_shifted = (max_value = 8388607 >> shift) << shift; break; case 3: default: min_shifted = (min_value = (long) 0x80000000 >> shift) << shift; max_shifted = (max_value = (long) 0x7FFFFFFF >> shift) << shift; break; } if (!(flags & MONO_FLAG)) sample_count *= 2; while (sample_count--) { if (*buffer < min_value) *buffer++ = min_shifted; else if (*buffer > max_value) *buffer++ = max_shifted; else *buffer++ <<= shift; } } else if (shift) { if (!(flags & MONO_FLAG)) sample_count *= 2; while (sample_count--) *buffer++ <<= shift; } } // This function checks the crc value(s) for an unpacked block, returning the // number of actual crc errors detected for the block. The block must be // completely unpacked before this test is valid. For losslessly unpacked // blocks of float or extended integer data the extended crc is also checked. // Note that WavPack's crc is not a CCITT approved polynomial algorithm, but // is a much simpler method that is virtually as robust for real world data. int check_crc_error (WavpackContext *wpc) { WavpackStream *wps = &wpc->stream; int result = 0; if (wps->crc != wps->wphdr.crc) ++result; return result; }