/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2016 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "crypto.h" #include "misc.h" #include #include using namespace CryptoPP; namespace { enum crypto_method_t g_cur_method = CRYPTO_NONE; byte g_key[16]; CBC_Mode::Encryption g_aes_enc; CBC_Mode::Decryption g_aes_dec; bool g_aes_enc_key_dirty; /* true of g_aes_enc key needs to be updated */ bool g_aes_dec_key_dirty; /* same for g_aes_dec */ int cbc_mac2( const byte *in_data, /* Input data */ byte *out_data, /* Output data (or NULL) */ int nr_blocks, /* Number of blocks to encrypt/decrypt (one block=16 bytes) */ byte key[16], /* Key */ byte iv[16], /* Initialisation Vector */ byte (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */ bool encrypt /* 1 to encrypt, 0 to decrypt */ ) { /* encrypt */ if(encrypt) { /* update keys if neeeded */ if(g_aes_enc_key_dirty) { /* we need to provide an IV with the key, although we change it * everytime we run the cipher anyway */ g_aes_enc.SetKeyWithIV(g_key, 16, iv, 16); g_aes_enc_key_dirty = false; } g_aes_enc.Resynchronize(iv, 16); byte tmp[16]; /* we need some output buffer, either a temporary one if we are CBC-MACing * only, or use output buffer if available */ byte *out_ptr = (out_data == NULL) ? tmp : out_data; while(nr_blocks-- > 0) { g_aes_enc.ProcessData(out_ptr, in_data, 16); /* if this is the last block, copy CBC-MAC */ if(nr_blocks == 0 && out_cbc_mac) memcpy(out_cbc_mac, out_ptr, 16); /* if we are writing data to the output buffer, advance output pointer */ if(out_data != NULL) out_ptr += 16; in_data += 16; } return CRYPTO_ERROR_SUCCESS; } /* decrypt */ else { /* update keys if neeeded */ if(g_aes_dec_key_dirty) { /* we need to provide an IV with the key, although we change it * everytime we run the cipher anyway */ g_aes_dec.SetKeyWithIV(g_key, 16, iv, 16); g_aes_dec_key_dirty = false; } /* we cannot produce a CBC-MAC in decrypt mode, output buffer exists */ if(out_cbc_mac || out_data == NULL) return CRYPTO_ERROR_INVALID_OP; g_aes_dec.Resynchronize(iv, 16); g_aes_dec.ProcessData(out_data, in_data, nr_blocks * 16); return CRYPTO_ERROR_SUCCESS; } } } int crypto_setup(struct crypto_key_t *key) { g_cur_method = key->method; switch(g_cur_method) { case CRYPTO_KEY: memcpy(g_key, key->u.key, 16); g_aes_dec_key_dirty = true; g_aes_enc_key_dirty = true; return CRYPTO_ERROR_SUCCESS; default: return CRYPTO_ERROR_BADSETUP; } } int crypto_apply( byte *in_data, /* Input data */ byte *out_data, /* Output data (or NULL) */ int nr_blocks, /* Number of blocks (one block=16 bytes) */ byte iv[16], /* Key */ byte (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */ bool encrypt) { if(g_cur_method == CRYPTO_KEY) return cbc_mac2(in_data, out_data, nr_blocks, g_key, iv, out_cbc_mac, encrypt); else return CRYPTO_ERROR_BADSETUP; }