/* * FFT/IFFT transforms converted to integer precision * Copyright (c) 2010 Dave Hooper, Mohamed Tarek, Michael Giacomelli * Copyright (c) 2008 Loren Merritt * Copyright (c) 2002 Fabrice Bellard * Partly based on libdjbfft by D. J. Bernstein * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/fft.c * FFT/IFFT transforms. */ #ifdef CPU_ARM // we definitely want CONFIG_SMALL undefined for ipod // so we get the inlined version of fft16 (which is measurably faster) #undef CONFIG_SMALL #else #undef CONFIG_SMALL #endif #include "fft.h" #include #include #include #include #include #include #include "codeclib_misc.h" #include "mdct_lookup.h" /* constants for fft_16 (same constants as in mdct_arm.S ... ) */ #define cPI1_8 (0x7641af3d) /* cos(pi/8) s.31 */ #define cPI2_8 (0x5a82799a) /* cos(2pi/8) = 1/sqrt(2) s.31 */ #define cPI3_8 (0x30fbc54d) /* cos(3pi/8) s.31 */ /* asm-optimised functions and/or macros */ #include "fft-ffmpeg_arm.h" #include "fft-ffmpeg_cf.h" #ifndef ICODE_ATTR_TREMOR_MDCT #define ICODE_ATTR_TREMOR_MDCT ICODE_ATTR #endif #if 0 static int split_radix_permutation(int i, int n, int inverse) { int m; if(n <= 2) return i&1; m = n >> 1; if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; m >>= 1; if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; else return split_radix_permutation(i, m, inverse)*4 - 1; } static void ff_fft_permute_c(FFTContext *s, FFTComplex *z) { int j, k, np; FFTComplex tmp; //const uint16_t *revtab = s->revtab; np = 1 << s->nbits; const int revtab_shift = (12 - s->nbits); /* reverse */ for(j=0;j>revtab_shift; if (k < j) { tmp = z[k]; z[k] = z[j]; z[j] = tmp; } } } #endif #define BF(x,y,a,b) {\ x = a - b;\ y = a + b;\ } #define BF_REV(x,y,a,b) {\ x = a + b;\ y = a - b;\ } #ifndef FFT_FFMPEG_INCL_OPTIMISED_BUTTERFLIES #define BUTTERFLIES(a0,a1,a2,a3) {\ {\ FFTSample temp1,temp2;\ BF(temp1, temp2, t5, t1);\ BF(a2.re, a0.re, a0.re, temp2);\ BF(a3.im, a1.im, a1.im, temp1);\ }\ {\ FFTSample temp1,temp2;\ BF(temp1, temp2, t2, t6);\ BF(a3.re, a1.re, a1.re, temp1);\ BF(a2.im, a0.im, a0.im, temp2);\ }\ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ {\ FFTSample temp1, temp2;\ BF(temp1, temp2, t5, t1);\ BF(a2.re, a0.re, r0, temp2);\ BF(a3.im, a1.im, i1, temp1);\ }\ {\ FFTSample temp1, temp2;\ BF(temp1, temp2, t2, t6);\ BF(a3.re, a1.re, r1, temp1);\ BF(a2.im, a0.im, i0, temp2);\ }\ } #endif /* see conjugate pair description in http://www.fftw.org/newsplit.pdf a0 = z[k] a1 = z[k+N/4] a2 = z[k+2N/4] a3 = z[k+3N/4] result: y[k] = z[k]+w(z[k+2N/4])+w'(z[k+3N/4]) y[k+N/4] = z[k+N/4]-iw(z[k+2N/4])+iw'(z[k+3N/4]) y[k+2N/4] = z[k]-w(z[k+2N/4])-w'(z[k+3N/4]) y[k+3N/4] = z[k+N/4]+iw(z[k+2N/4])-iw'(z[k+3N/4]) i.e. a0 = a0 + (w.a2 + w'.a3) a1 = a1 - i(w.a2 - w'.a3) a2 = a0 - (w.a2 + w'.a3) a3 = a1 + i(w.a2 - w'.a3) note re(w') = re(w) and im(w') = -im(w) so therefore re(a0) = re(a0) + re(w.a2) + re(w.a3) im(a0) = im(a0) + im(w.a2) - im(w.a3) etc and remember also that Re([s+it][u+iv]) = su-tv Im([s+it][u+iv]) = sv+tu so Re(w'.(s+it)) = Re(w').s - Im(w').t = Re(w).s + Im(w).t Im(w'.(s+it)) = Re(w').t + Im(w').s = Re(w).t - Im(w).s For inverse dft we take the complex conjugate of all twiddle factors. Hence a0 = a0 + (w'.a2 + w.a3) a1 = a1 - i(w'.a2 - w.a3) a2 = a0 - (w'.a2 + w.a3) a3 = a1 + i(w'.a2 - w.a3) Define t1 = Re(w'.a2) = Re(w)*Re(a2) + Im(w)*Im(a2) t2 = Im(w'.a2) = Re(w)*Im(a2) - Im(w)*Re(a2) t5 = Re(w.a3) = Re(w)*Re(a3) - Im(w)*Im(a3) t6 = Im(w.a3) = Re(w)*Im(a3) + Im(w)*Re(a3) Then we just output: a0.re = a0.re + ( t1 + t5 ) a0.im = a0.im + ( t2 + t6 ) a1.re = a1.re + ( t2 - t6 ) // since we multiply by -i and i(-i) = 1 a1.im = a1.im - ( t1 - t5 ) // since we multiply by -i and 1(-i) = -i a2.re = a0.re - ( t1 + t5 ) a2.im = a0.im - ( t1 + t5 ) a3.re = a1.re - ( t2 - t6 ) // since we multiply by +i and i(+i) = -1 a3.im = a1.im + ( t1 - t5 ) // since we multiply by +i and 1(+i) = i */ #ifndef FFT_FFMPEG_INCL_OPTIMISED_TRANSFORM static inline FFTComplex* TRANSFORM(FFTComplex * z, unsigned int n, FFTSample wre, FFTSample wim) { register FFTSample t1,t2,t5,t6,r_re,r_im; r_re = z[n*2].re; r_im = z[n*2].im; XPROD31_R(r_re, r_im, wre, wim, t1,t2); r_re = z[n*3].re; r_im = z[n*3].im; XNPROD31_R(r_re, r_im, wre, wim, t5,t6); BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]); return z+1; } static inline FFTComplex* TRANSFORM_W01(FFTComplex * z, unsigned int n, const FFTSample * w) { register const FFTSample wre=w[0],wim=w[1]; register FFTSample t1,t2,t5,t6,r_re,r_im; r_re = z[n*2].re; r_im = z[n*2].im; XPROD31_R(r_re, r_im, wre, wim, t1,t2); r_re = z[n*3].re; r_im = z[n*3].im; XNPROD31_R(r_re, r_im, wre, wim, t5,t6); BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]); return z+1; } static inline FFTComplex* TRANSFORM_W10(FFTComplex * z, unsigned int n, const FFTSample * w) { register const FFTSample wim=w[0],wre=w[1]; register FFTSample t1,t2,t5,t6,r_re,r_im; r_re = z[n*2].re; r_im = z[n*2].im; XPROD31_R(r_re, r_im, wre, wim, t1,t2); r_re = z[n*3].re; r_im = z[n*3].im; XNPROD31_R(r_re, r_im, wre, wim, t5,t6); BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]); return z+1; } static inline FFTComplex* TRANSFORM_EQUAL(FFTComplex * z, unsigned int n) { register FFTSample t1,t2,t5,t6,temp1,temp2; register FFTSample * my_z = (FFTSample *)(z); my_z += n*4; t2 = MULT31(my_z[0], cPI2_8); temp1 = MULT31(my_z[1], cPI2_8); my_z += n*2; temp2 = MULT31(my_z[0], cPI2_8); t5 = MULT31(my_z[1], cPI2_8); t1 = ( temp1 + t2 ); t2 = ( temp1 - t2 ); t6 = ( temp2 + t5 ); t5 = ( temp2 - t5 ); my_z -= n*6; BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]); return z+1; } static inline FFTComplex* TRANSFORM_ZERO(FFTComplex * z, unsigned int n) { FFTSample t1,t2,t5,t6; t1 = z[n*2].re; t2 = z[n*2].im; t5 = z[n*3].re; t6 = z[n*3].im; BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]); return z+1; } #endif /* z[0...8n-1], w[1...2n-1] */ static void pass(FFTComplex *z_arg, unsigned int STEP_arg, unsigned int n_arg) ICODE_ATTR_TREMOR_MDCT; static void pass(FFTComplex *z_arg, unsigned int STEP_arg, unsigned int n_arg) { register FFTComplex * z = z_arg; register unsigned int STEP = STEP_arg; register unsigned int n = n_arg; register const FFTSample *w = sincos_lookup0+STEP; /* wre = *(wim+1) . ordering is sin,cos */ register const FFTSample *w_end = sincos_lookup0+1024; /* first two are special (well, first one is special, but we need to do pairs) */ z = TRANSFORM_ZERO(z,n); z = TRANSFORM_W10(z,n,w); w += STEP; /* first pass forwards through sincos_lookup0*/ do { z = TRANSFORM_W10(z,n,w); w += STEP; z = TRANSFORM_W10(z,n,w); w += STEP; } while(LIKELY(w < w_end)); /* second half: pass backwards through sincos_lookup0*/ /* wim and wre are now in opposite places so ordering now [0],[1] */ w_end=sincos_lookup0; while(LIKELY(w>w_end)) { z = TRANSFORM_W01(z,n,w); w -= STEP; z = TRANSFORM_W01(z,n,w); w -= STEP; } } /* what is STEP? sincos_lookup0 has sin,cos pairs for 1/4 cycle, in 1024 points so half cycle would be 2048 points ff_cos_16 has 8 elements corresponding to 4 cos points and 4 sin points so each of the 4 points pairs corresponds to a 256*2-byte jump in sincos_lookup0 8192/16 (from "ff_cos_16") is 512 bytes. i.e. for fft16, STEP = 8192/16 */ #define DECL_FFT(n,n2,n4)\ static void fft##n(FFTComplex *z) ICODE_ATTR_TREMOR_MDCT;\ static void fft##n(FFTComplex *z)\ {\ fft##n2(z);\ fft##n4(z+n4*2);\ fft##n4(z+n4*3);\ pass(z,8192/n,n4);\ } #ifndef FFT_FFMPEG_INCL_OPTIMISED_FFT4 static inline void fft4(FFTComplex *z) { FFTSample t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); // t3=r1-r3 ; t1 = r1+r3 BF(t8, t6, z[3].re, z[2].re); // t8=r7-r5 ; t6 = r7+r5 BF(z[2].re, z[0].re, t1, t6); // r5=t1-t6 ; r1 = t1+t6 BF(t4, t2, z[0].im, z[1].im); // t4=r2-r4 ; t2 = r2+r4 BF(t7, t5, z[2].im, z[3].im); // t7=r6-r8 ; t5 = r6+r8 BF(z[3].im, z[1].im, t4, t8); // r8=t4-t8 ; r4 = t4+t8 BF(z[3].re, z[1].re, t3, t7); // r7=t3-t7 ; r3 = t3+t7 BF(z[2].im, z[0].im, t2, t5); // r6=t2-t5 ; r2 = t2+t5 } #endif static void fft4_dispatch(FFTComplex *z) { fft4(z); } #ifndef FFT_FFMPEG_INCL_OPTIMISED_FFT8 static inline void fft8(FFTComplex *z) { fft4(z); FFTSample t1,t2,t3,t4,t7,t8; BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t3, z[7].re, z[6].re, -z[7].re); BF(t4, z[7].im, z[6].im, -z[7].im); BF(t8, t1, t3, t1); BF(t7, t2, t2, t4); BF(z[4].re, z[0].re, z[0].re, t1); BF(z[4].im, z[0].im, z[0].im, t2); BF(z[6].re, z[2].re, z[2].re, t7); BF(z[6].im, z[2].im, z[2].im, t8); z++; TRANSFORM_EQUAL(z,2); } #endif static void fft8_dispatch(FFTComplex *z) { fft8(z); } #ifndef CONFIG_SMALL static void fft16(FFTComplex *z) ICODE_ATTR_TREMOR_MDCT; static void fft16(FFTComplex *z) { fft8(z); fft4(z+8); fft4(z+12); TRANSFORM_ZERO(z,4); z+=2; TRANSFORM_EQUAL(z,4); z-=1; TRANSFORM(z,4,cPI1_8,cPI3_8); z+=2; TRANSFORM(z,4,cPI3_8,cPI1_8); } #else DECL_FFT(16,8,4) #endif DECL_FFT(32,16,8) DECL_FFT(64,32,16) DECL_FFT(128,64,32) DECL_FFT(256,128,64) DECL_FFT(512,256,128) DECL_FFT(1024,512,256) DECL_FFT(2048,1024,512) DECL_FFT(4096,2048,1024) static void (*fft_dispatch[])(FFTComplex*) = { fft4_dispatch, fft8_dispatch, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, fft2048, fft4096 }; void ff_fft_calc_c(int nbits, FFTComplex *z) { fft_dispatch[nbits-2](z); } #if 0 int main (void) { #define PRECISION 16 #define FFT_SIZE 1024 #define ftofix32(x) ((fixed32)((x) * (float)(1 << PRECISION) + ((x) < 0 ? -0.5 : 0.5))) #define itofix32(x) ((x) << PRECISION) #define fixtoi32(x) ((x) >> PRECISION) int j; const long N = FFT_SIZE; double r[FFT_SIZE] = {0.0}, i[FFT_SIZE] = {0.0}; long n; double t; double amp, phase; clock_t start, end; double exec_time = 0; FFTContext s; FFTComplex z[FFT_SIZE]; memset(z, 0, 64*sizeof(FFTComplex)); /* Generate saw-tooth test data */ for (n = 0; n < FFT_SIZE; n++) { t = (2 * M_PI * n)/N; /*z[n].re = 1.1 + sin( t) + 0.5 * sin(2.0 * t) + (1.0/3.0) * sin(3.0 * t) + 0.25 * sin(4.0 * t) + 0.2 * sin(5.0 * t) + (1.0/6.0) * sin(6.0 * t) + (1.0/7.0) * sin(7.0 * t) ;*/ z[n].re = ftofix32(cos(2*M_PI*n/64)); //printf("z[%d] = %f\n", n, z[n].re); //getchar(); } ff_fft_init(&s, 10, 1); //start = clock(); //for(n = 0; n < 1000000; n++) ff_fft_permute_c(&s, z); ff_fft_calc_c(&s, z); //end = clock(); //exec_time = (((double)end-(double)start)/CLOCKS_PER_SEC); for(j = 0; j < FFT_SIZE; j++) { printf("%8.4f\n", sqrt(pow(fixtof32(z[j].re),2)+ pow(fixtof32(z[j].im), 2))); //getchar(); } printf("muls = %d, adds = %d\n", muls, adds); //printf(" Time elapsed = %f\n", exec_time); //ff_fft_end(&s); } #endif