/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 Dave Chapman * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "codec.h" #include #include "playback.h" #include "mp3data.h" #include "lib/codeclib.h" struct mad_stream Stream IDATA_ATTR; struct mad_frame Frame IDATA_ATTR; struct mad_synth Synth IDATA_ATTR; mad_timer_t Timer; struct dither d0, d1; /* The following function is used inside libmad - let's hope it's never called. */ void abort(void) { } /* The "dither" code to convert the 24-bit samples produced by libmad was taken from the coolplayer project - coolplayer.sourceforge.net */ struct dither { mad_fixed_t error[3]; mad_fixed_t random; }; # define SAMPLE_DEPTH 16 # define scale(x, y) dither((x), (y)) /* * NAME: prng() * DESCRIPTION: 32-bit pseudo-random number generator */ static __inline unsigned long prng(unsigned long state) { return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL; } /* * NAME: dither() * DESCRIPTION: dither and scale sample */ inline int dither(mad_fixed_t sample, struct dither *dither) { unsigned int scalebits; mad_fixed_t output, mask, random; enum { MIN = -MAD_F_ONE, MAX = MAD_F_ONE - 1 }; /* noise shape */ sample += dither->error[0] - dither->error[1] + dither->error[2]; dither->error[2] = dither->error[1]; dither->error[1] = dither->error[0]/2; /* bias */ output = sample + (1L << (MAD_F_FRACBITS + 1 - SAMPLE_DEPTH - 1)); scalebits = MAD_F_FRACBITS + 1 - SAMPLE_DEPTH; mask = (1L << scalebits) - 1; /* dither */ random = prng(dither->random); output += (random & mask) - (dither->random & mask); //dither->random = random; /* clip */ if (output > MAX) { output = MAX; if (sample > MAX) sample = MAX; } else if (output < MIN) { output = MIN; if (sample < MIN) sample = MIN; } /* quantize */ output &= ~mask; /* error feedback */ dither->error[0] = sample - output; /* scale */ return output >> scalebits; } inline int detect_silence(mad_fixed_t sample) { unsigned int scalebits; mad_fixed_t output, mask; enum { MIN = -MAD_F_ONE, MAX = MAD_F_ONE - 1 }; /* bias */ output = sample + (1L << (MAD_F_FRACBITS + 1 - SAMPLE_DEPTH - 1)); scalebits = MAD_F_FRACBITS + 1 - SAMPLE_DEPTH; mask = (1L << scalebits) - 1; /* clip */ if (output > MAX) { output = MAX; if (sample > MAX) sample = MAX; } else if (output < MIN) { output = MIN; if (sample < MIN) sample = MIN; } /* quantize */ output &= ~mask; /* scale */ output >>= scalebits + 4; if (output == 0x00 || output == 0xff) return 1; return 0; } #define INPUT_CHUNK_SIZE 8192 #define OUTPUT_BUFFER_SIZE 65536 /* Must be an integer multiple of 4. */ unsigned char OutputBuffer[OUTPUT_BUFFER_SIZE]; unsigned char *OutputPtr; unsigned char *GuardPtr = NULL; const unsigned char *OutputBufferEnd = OutputBuffer + OUTPUT_BUFFER_SIZE; long resampled_data[2][5000]; /* enough to cope with 11khz upsampling */ mad_fixed_t mad_frame_overlap[2][32][18] IDATA_ATTR; unsigned char mad_main_data[MAD_BUFFER_MDLEN] IDATA_ATTR; /* TODO: what latency does layer 1 have? */ int mpeg_latency[3] = { 0, 481, 529 }; #ifdef USE_IRAM extern char iramcopy[]; extern char iramstart[]; extern char iramend[]; #endif #undef DEBUG_GAPLESS struct resampler { long last_sample, phase, delta; }; #if CONFIG_CPU==MCF5249 && !defined(SIMULATOR) #define INIT() asm volatile ("move.l #0xb0, %macsr") /* frac, round, clip */ #define FRACMUL(x, y) \ ({ \ long t; \ asm volatile ("mac.l %[a], %[b], %%acc0\n\t" \ "movclr.l %%acc0, %[t]\n\t" \ : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \ t; \ }) #else #define INIT() #define FRACMUL(x, y) (long)(((long long)(x)*(long long)(y)) << 1) #endif /* linear resampling, introduces one sample delay, because of our inability to look into the future at the end of a frame */ long downsample(long *in, long *out, int num, struct resampler *s) { long i = 1, pos; long last = s->last_sample; INIT(); pos = s->phase >> 16; /* check if we need last sample of previous frame for interpolation */ if (pos > 0) last = in[pos - 1]; out[0] = last + FRACMUL((s->phase & 0xffff) << 15, in[pos] - last); s->phase += s->delta; while ((pos = s->phase >> 16) < num) { out[i++] = in[pos - 1] + FRACMUL((s->phase & 0xffff) << 15, in[pos] - in[pos - 1]); s->phase += s->delta; } /* wrap phase accumulator back to start of next frame */ s->phase -= num << 16; s->last_sample = in[num - 1]; return i; } long upsample(long *in, long *out, int num, struct resampler *s) { long i = 0, pos; INIT(); while ((pos = s->phase >> 16) == 0) { out[i++] = s->last_sample + FRACMUL((s->phase & 0xffff) << 15, in[pos] - s->last_sample); s->phase += s->delta; } while ((pos = s->phase >> 16) < num) { out[i++] = in[pos - 1] + FRACMUL((s->phase & 0xffff) << 15, in[pos] - in[pos - 1]); s->phase += s->delta; } /* wrap phase accumulator back to start of next frame */ s->phase -= num << 16; s->last_sample = in[num - 1]; return i; } long resample(long *in, long *out, int num, struct resampler *s) { if (s->delta >= (1 << 16)) return downsample(in, out, num, s); else return upsample(in, out, num, s); } /* this is the codec entry point */ enum codec_status codec_start(struct codec_api* api) { struct codec_api *ci = api; struct mp3info *info; int Status = 0; size_t size; int file_end; unsigned short Sample; char *InputBuffer; unsigned int samplecount; unsigned int samplesdone; bool first_frame; #ifdef DEBUG_GAPLESS bool first = true; int fd; #endif int i; int yieldcounter = 0; int stop_skip, start_skip; struct resampler lr = { 0, 0, 0 }, rr = { 0, 0, 0 }; long length; /* Generic codec inititialisation */ TEST_CODEC_API(api); #ifdef USE_IRAM ci->memcpy(iramstart, iramcopy, iramend - iramstart); #endif /* This function sets up the buffers and reads the file into RAM */ if (codec_init(api)) { return CODEC_ERROR; } /* Create a decoder instance */ ci->configure(CODEC_SET_FILEBUF_LIMIT, (int *)(1024*1024*2)); ci->configure(CODEC_SET_FILEBUF_CHUNKSIZE, (int *)(1024*16)); ci->memset(&Stream, 0, sizeof(struct mad_stream)); ci->memset(&Frame, 0, sizeof(struct mad_frame)); ci->memset(&Synth, 0, sizeof(struct mad_synth)); ci->memset(&Timer, 0, sizeof(mad_timer_t)); mad_stream_init(&Stream); mad_frame_init(&Frame); mad_synth_init(&Synth); mad_timer_reset(&Timer); /* We do this so libmad doesn't try to call codec_calloc() */ memset(mad_frame_overlap, 0, sizeof(mad_frame_overlap)); Frame.overlap = &mad_frame_overlap; Stream.main_data = &mad_main_data; /* This label might need to be moved above all the init code, but I don't think reiniting the codec is necessary for MPEG. It might even be unwanted for gapless playback */ next_track: #ifdef DEBUG_GAPLESS if (first) fd = ci->open("/first.pcm", O_WRONLY | O_CREAT); else fd = ci->open("/second.pcm", O_WRONLY | O_CREAT); first = false; #endif info = ci->mp3data; first_frame = false; file_end = 0; OutputPtr = OutputBuffer; while (!*ci->taginfo_ready) ci->yield(); ci->request_buffer(&size, ci->id3->first_frame_offset); ci->advance_buffer(size); if (info->enc_delay >= 0 && info->enc_padding >= 0) { stop_skip = info->enc_padding - mpeg_latency[info->layer]; if (stop_skip < 0) stop_skip = 0; start_skip = info->enc_delay + mpeg_latency[info->layer]; } else { stop_skip = 0; /* We want to skip this amount anyway */ start_skip = mpeg_latency[info->layer]; } /* NOTE: currently this doesn't work, the below calculated samples_count seems to be right, but sometimes libmad just can't supply us with all the data we need... */ if (info->frame_count) { /* TODO: 1152 is the frame size in samples for MPEG1 layer 2 and layer 3, it's probably not correct at all for MPEG2 and layer 1 */ samplecount = info->frame_count*1152 - (start_skip + stop_skip); samplesdone = ci->id3->elapsed * (ci->id3->frequency / 100) / 10; } else { samplecount = ci->id3->length * (ci->id3->frequency / 100) / 10; samplesdone = ci->id3->elapsed * (ci->id3->frequency / 100) / 10; } /* rb->snprintf(buf2, sizeof(buf2), "sc: %d", samplecount); rb->splash(0, true, buf2); rb->snprintf(buf2, sizeof(buf2), "length: %d", ci->id3->length); rb->splash(HZ*5, true, buf2); rb->snprintf(buf2, sizeof(buf2), "frequency: %d", ci->id3->frequency); rb->splash(HZ*5, true, buf2); */ lr.delta = rr.delta = ci->id3->frequency*65536/44100; /* This is the decoding loop. */ while (1) { ci->yield(); if (ci->stop_codec || ci->reload_codec) { break ; } if (ci->seek_time) { unsigned int sample_loc; int newpos; sample_loc = ci->seek_time/1000 * ci->id3->frequency; newpos = ci->mp3_get_filepos(ci->seek_time-1); if (ci->seek_buffer(newpos)) { if (sample_loc >= samplecount + samplesdone) break ; samplecount += samplesdone - sample_loc; samplesdone = sample_loc; } ci->seek_time = 0; } /* Lock buffers */ if (Stream.error == 0) { InputBuffer = ci->request_buffer(&size, INPUT_CHUNK_SIZE); if (size == 0 || InputBuffer == NULL) break ; mad_stream_buffer(&Stream, InputBuffer, size); } //if ((int)ci->curpos >= ci->id3->first_frame_offset) //first_frame = true; if(mad_frame_decode(&Frame,&Stream)) { if (Stream.error == MAD_FLAG_INCOMPLETE || Stream.error == MAD_ERROR_BUFLEN) { // ci->splash(HZ*1, true, "Incomplete"); /* This makes the codec to support partially corrupted files too. */ if (file_end == 30) break ; /* Fill the buffer */ Stream.error = 0; file_end++; continue ; } else if(MAD_RECOVERABLE(Stream.error)) { if(Stream.error!=MAD_ERROR_LOSTSYNC || Stream.this_frame!=GuardPtr) { // rb->splash(HZ*1, true, "Recoverable...!"); } continue; } else if(Stream.error==MAD_ERROR_BUFLEN) { //rb->splash(HZ*1, true, "Buflen error"); break ; } else { //rb->splash(HZ*1, true, "Unrecoverable error"); Status=1; break; } } if (Stream.next_frame) ci->advance_buffer_loc((void *)Stream.next_frame); file_end = false; /* ?? Do we need the timer module? */ // mad_timer_add(&Timer,Frame.header.duration); mad_synth_frame(&Synth,&Frame); //if (!first_frame) { //samplecount -= Synth.pcm.length; //continue ; //} /* Convert MAD's numbers to an array of 16-bit LE signed integers */ /* We skip start_skip number of samples here, this should only happen for very first frame in the stream. */ /* TODO: possible for start_skip to exceed one frames worth of samples? */ length = resample((long *)&Synth.pcm.samples[0][start_skip], resampled_data[0], Synth.pcm.length, &lr); if (MAD_NCHANNELS(&Frame.header) == 2) resample((long *)&Synth.pcm.samples[1][start_skip], resampled_data[1], Synth.pcm.length, &rr); for (i = 0; i < length; i++) { start_skip = 0; /* not very elegant, and might want to keep this value */ samplesdone++; //if (ci->mp3data->padding > 0) { // ci->mp3data->padding--; // continue ; //} /*if (!first_frame) { if (detect_silence(Synth.pcm.samples[0][i])) continue ; first_frame = true; }*/ /* Left channel */ Sample = scale(resampled_data[0][i], &d0); *(OutputPtr++) = Sample >> 8; *(OutputPtr++) = Sample & 0xff; /* Right channel. If the decoded stream is monophonic then * the right output channel is the same as the left one. */ if (MAD_NCHANNELS(&Frame.header) == 2) Sample = scale(resampled_data[1][i], &d1); *(OutputPtr++) = Sample >> 8; *(OutputPtr++) = Sample & 0xff; samplecount--; if (samplecount == 0) { #ifdef DEBUG_GAPLESS ci->write(fd, OutputBuffer, (int)OutputPtr - (int)OutputBuffer); #endif while (!ci->audiobuffer_insert(OutputBuffer, (int)OutputPtr - (int)OutputBuffer)) ci->yield(); goto song_end; } if (yieldcounter++ == 200) { ci->yield(); yieldcounter = 0; } /* Flush the buffer if it is full. */ if (OutputPtr == OutputBufferEnd) { #ifdef DEBUG_GAPLESS ci->write(fd, OutputBuffer, OUTPUT_BUFFER_SIZE); #endif while (!ci->audiobuffer_insert(OutputBuffer, OUTPUT_BUFFER_SIZE)) ci->yield(); OutputPtr = OutputBuffer; } } ci->set_elapsed(samplesdone / (ci->id3->frequency/1000)); } song_end: #ifdef DEBUG_GAPLESS ci->close(fd); #endif Stream.error = 0; if (ci->request_next_track()) goto next_track; return CODEC_OK; }