/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (c) 2012 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include /* off_t */ #include #include "cpu.h" #include "system.h" #include "backlight-target.h" #include "lcd.h" #include "lcdif-imx233.h" #include "clkctrl-imx233.h" #include "pinctrl-imx233.h" #include "logf.h" #ifdef HAVE_LCD_ENABLE static bool lcd_on; #endif static unsigned lcd_yuv_options = 0; static void setup_parameters(void) { imx233_lcdif_reset(); imx233_lcdif_set_lcd_databus_width(BV_LCDIF_CTRL_LCD_DATABUS_WIDTH__16_BIT); imx233_lcdif_set_word_length(BV_LCDIF_CTRL_WORD_LENGTH__16_BIT); imx233_lcdif_set_timings(2, 2, 3, 3); imx233_lcdif_enable_underflow_recover(true); } static void setup_lcd_pins(bool use_lcdif) { /* WARNING * the B1P22 pins is used to gate the speaker! Do NOT drive * them as lcd_dotclk and lcd_hsync or it will break audio */ imx233_pinctrl_acquire_pin(1, 18, "lcd reset"); imx233_pinctrl_acquire_pin(1, 19, "lcd rs"); imx233_pinctrl_acquire_pin(1, 20, "lcd wr"); imx233_pinctrl_acquire_pin(1, 21, "lcd cs"); imx233_pinctrl_acquire_pin(1, 23, "lcd enable"); imx233_pinctrl_acquire_pin(1, 25, "lcd vsync"); imx233_pinctrl_acquire_pin_mask(1, 0x3ffff, "lcd data"); if(use_lcdif) { imx233_set_pin_function(1, 25, PINCTRL_FUNCTION_MAIN); /* lcd_vsync */ imx233_set_pin_function(1, 21, PINCTRL_FUNCTION_MAIN); /* lcd_cs */ imx233_set_pin_function(1, 23, PINCTRL_FUNCTION_MAIN); /* lcd_enable */ imx233_set_pin_function(1, 18, PINCTRL_FUNCTION_MAIN); /* lcd_reset */ imx233_set_pin_function(1, 19, PINCTRL_FUNCTION_MAIN); /* lcd_rs */ imx233_set_pin_function(1, 16, PINCTRL_FUNCTION_MAIN); /* lcd_d16 */ imx233_set_pin_function(1, 17, PINCTRL_FUNCTION_MAIN); /* lcd_d17 */ imx233_set_pin_function(1, 20, PINCTRL_FUNCTION_MAIN); /* lcd_wr */ __REG_CLR(HW_PINCTRL_MUXSEL(2)) = 0xffffffff; /* lcd_d{0-15} */ } else { __REG_SET(HW_PINCTRL_MUXSEL(2)) = 0xffffffff; /* lcd_d{0-15} */ imx233_enable_gpio_output_mask(1, 0x2bfffff, false); /* lcd_{d{0-17},reset,rs,wr,cs,enable,vsync} */ imx233_set_pin_function(1, 16, PINCTRL_FUNCTION_GPIO); /* lcd_d16 */ imx233_set_pin_function(1, 17, PINCTRL_FUNCTION_GPIO); /* lcd_d17 */ imx233_set_pin_function(1, 19, PINCTRL_FUNCTION_GPIO); /* lcd_rs */ imx233_set_pin_function(1, 20, PINCTRL_FUNCTION_GPIO); /* lcd_wr */ imx233_set_pin_function(1, 21, PINCTRL_FUNCTION_GPIO); /* lcd_cs */ imx233_set_pin_function(1, 23, PINCTRL_FUNCTION_GPIO); /* lcd_enable */ imx233_set_pin_function(1, 25, PINCTRL_FUNCTION_GPIO); /* lcd_vsync */ } } static void common_lcd_enable(bool enable) { imx233_lcdif_enable(enable); setup_lcd_pins(enable); /* use GPIO pins when disable */ } static void setup_lcdif(void) { setup_parameters(); common_lcd_enable(true); imx233_lcdif_enable_bus_master(true); } static void setup_lcdif_clock(void) { /* the LCD seems to work at 24Mhz, so use the xtal clock with no divider */ imx233_clkctrl_enable_clock(CLK_PIX, false); imx233_clkctrl_set_clock_divisor(CLK_PIX, 1); imx233_clkctrl_set_bypass_pll(CLK_PIX, true); /* use XTAL */ imx233_clkctrl_enable_clock(CLK_PIX, true); } static void lcd_write_reg(uint32_t reg, uint32_t data) { imx233_lcdif_pio_send(false, 2, ®); if(reg != 0x22) imx233_lcdif_pio_send(true, 2, &data); } #define REG_UDELAY 0xffffffff struct lcd_sequence_entry_t { uint32_t reg, data; }; static void lcd_send_sequence(struct lcd_sequence_entry_t *seq, unsigned count) { for(;count-- > 0; seq++) { if(seq->reg == REG_UDELAY) udelay(seq->data); else lcd_write_reg(seq->reg, seq->data); } } #define _begin_seq() static struct lcd_sequence_entry_t __seq[] = { #define _udelay(a) {REG_UDELAY, a}, #define _lcd_write_reg(a, b) {a, b}, #define _end_seq() }; lcd_send_sequence(__seq, sizeof(__seq) / sizeof(__seq[0])); static void lcd_init_seq(void) { _begin_seq() _lcd_write_reg(1, 0x11c) _lcd_write_reg(2, 0x100) _lcd_write_reg(3, 0x1030) _lcd_write_reg(8, 0x808) _lcd_write_reg(0xc, 0) _lcd_write_reg(0xf, 0xc01) _lcd_write_reg(0x20, 0) _lcd_write_reg(0x21, 0) _udelay(30) _lcd_write_reg(0x10, 0xa00) _lcd_write_reg(0x11, 0x1038) _udelay(30) _lcd_write_reg(0x12, 0x1010) _lcd_write_reg(0x13, 0x50) _lcd_write_reg(0x14, 0x4f58) _lcd_write_reg(0x30, 0) _lcd_write_reg(0x31, 0xdb) _lcd_write_reg(0x32, 0) _lcd_write_reg(0x33, 0) _lcd_write_reg(0x34, 0xdb) _lcd_write_reg(0x35, 0) _lcd_write_reg(0x36, 0xaf) _lcd_write_reg(0x37, 0) _lcd_write_reg(0x38, 0xdb) _lcd_write_reg(0x39, 0) _lcd_write_reg(0x50, 0) _lcd_write_reg(0x51, 0x705) _lcd_write_reg(0x52, 0xe0a) _lcd_write_reg(0x53, 0x300) _lcd_write_reg(0x54, 0xa0e) _lcd_write_reg(0x55, 0x507) _lcd_write_reg(0x56, 0) _lcd_write_reg(0x57, 3) _lcd_write_reg(0x58, 0x90a) _lcd_write_reg(0x59, 0xa09) _udelay(30) _lcd_write_reg(7, 0x1017) _udelay(40) _end_seq() } void lcd_init_device(void) { setup_lcdif(); setup_lcdif_clock(); // reset device BF_SET(LCDIF_CTRL1, RESET); mdelay(50); BF_CLR(LCDIF_CTRL1, RESET); mdelay(10); BF_SET(LCDIF_CTRL1, RESET); lcd_init_seq(); #ifdef HAVE_LCD_ENABLE lcd_on = true; #endif } #ifdef HAVE_LCD_ENABLE bool lcd_active(void) { return lcd_on; } static void lcd_enable_seq(bool enable) { if(!enable) { _begin_seq() _end_seq() } else { _begin_seq() _end_seq() } } void lcd_enable(bool enable) { if(lcd_on == enable) return; lcd_on = enable; if(enable) common_lcd_enable(true); lcd_enable_seq(enable); if(!enable) common_lcd_enable(false); else send_event(LCD_EVENT_ACTIVATION, NULL); } #endif void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); } void lcd_update_rect(int x, int y, int w, int h) { #ifdef HAVE_LCD_ENABLE if(!lcd_on) return; #endif /* make sure the rectangle is included in the screen */ x = MIN(x, LCD_WIDTH); y = MIN(y, LCD_HEIGHT); w = MIN(w, LCD_WIDTH - x); h = MIN(h, LCD_HEIGHT - y); imx233_lcdif_wait_ready(); lcd_write_reg(0x37, x); lcd_write_reg(0x36, x + w - 1); lcd_write_reg(0x39, y); lcd_write_reg(0x38, y + h - 1); lcd_write_reg(0x20, x); lcd_write_reg(0x21, y); lcd_write_reg(0x22, 0); imx233_lcdif_wait_ready(); imx233_lcdif_set_word_length(BV_LCDIF_CTRL_WORD_LENGTH__16_BIT); imx233_lcdif_set_byte_packing_format(0xf); /* two pixels per 32-bit word */ imx233_lcdif_set_data_format(false, false, false); /* RGB565, don't care, don't care */ /* there are two cases here: * - either width = LCD_WIDTH and we can directly memcopy a part of lcd_framebuffer to FRAME * and send it * - either width != LCD_WIDTH and we have to build a contiguous copy of the rectangular area * into FRAME before sending it (which is slower and doesn't use the hardware) * In all cases, FRAME just acts as a temporary buffer. * NOTE It's more interesting to do a copy to FRAME in all cases since in system mode * the clock runs at 24MHz which provides barely 10MB/s bandwidth compared to >100MB/s * for memcopy operations */ if(w == LCD_WIDTH) { memcpy((void *)FRAME, FBADDR(x,y), w * h * sizeof(fb_data)); } else { for(int i = 0; i < h; i++) memcpy((fb_data *)FRAME + i * w, FBADDR(x,y + i), w * sizeof(fb_data)); } /* WARNING The LCDIF has a limitation on the vertical count ! In 16-bit packed mode * (which we used, ie 16-bit per pixel, 2 pixels per 32-bit words), the v_count * field must be a multiple of 2. Furthermore, it seems the lcd controller doesn't * really like when both w and h are even, probably because the writes to the GRAM * are done on several words and the controller requires dummy writes. * The workaround is to always make sure that we send a number of pixels which is * a multiple of 4 so that both the lcdif and the controller are happy. If any * of w or h is odd, we will send a copy of the first pixels as dummy writes. We will * send at most 3 bytes. We then send (w * h + 3) / 4 x 4 bytes. */ if(w % 2 == 1 || h % 2 == 1) { /* copy three pixel after the last one */ for(int i = 0; i < 3; i++) *((fb_data *)FRAME + w * h + i) = *((fb_data *)FRAME + i); /* WARNING we need to update w and h to reflect the pixel count BUT it * has no relation to w * h (it can even be 2 * prime). Hopefully, w <= 240 and * h <= 320 so w * h <= 76800 and (w * h + 3) / 4 <= 38400 which fits into * a 16-bit integer (horizontal count). */ h = (w * h + 3) / 4; w = 4; } imx233_lcdif_dma_send((void *)FRAME_PHYS_ADDR, w, h); } void lcd_yuv_set_options(unsigned options) { lcd_yuv_options = options; } #define YFAC (74) #define RVFAC (101) #define GUFAC (-24) #define GVFAC (-51) #define BUFAC (128) static inline int clamp(int val, int min, int max) { if (val < min) val = min; else if (val > max) val = max; return val; } void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { const unsigned char *ysrc, *usrc, *vsrc; int linecounter; fb_data *dst, *row_end; long z; /* width and height must be >= 2 and an even number */ width &= ~1; linecounter = height >> 1; #if LCD_WIDTH >= LCD_HEIGHT dst = FBADDR(x,y); row_end = dst + width; #else dst = FBADDR(LCD_WIDTH - y - 1,x); row_end = dst + LCD_WIDTH * width; #endif z = stride * src_y; ysrc = src[0] + z + src_x; usrc = src[1] + (z >> 2) + (src_x >> 1); vsrc = src[2] + (usrc - src[1]); /* stride => amount to jump from end of last row to start of next */ stride -= width; /* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */ do { do { int y, cb, cr, rv, guv, bu, r, g, b; y = YFAC*(*ysrc++ - 16); cb = *usrc++ - 128; cr = *vsrc++ - 128; rv = RVFAC*cr; guv = GUFAC*cb + GVFAC*cr; bu = BUFAC*cb; r = y + rv; g = y + guv; b = y + bu; if ((unsigned)(r | g | b) > 64*256-1) { r = clamp(r, 0, 64*256-1); g = clamp(g, 0, 64*256-1); b = clamp(b, 0, 64*256-1); } *dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9); #if LCD_WIDTH >= LCD_HEIGHT dst++; #else dst += LCD_WIDTH; #endif y = YFAC*(*ysrc++ - 16); r = y + rv; g = y + guv; b = y + bu; if ((unsigned)(r | g | b) > 64*256-1) { r = clamp(r, 0, 64*256-1); g = clamp(g, 0, 64*256-1); b = clamp(b, 0, 64*256-1); } *dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9); #if LCD_WIDTH >= LCD_HEIGHT dst++; #else dst += LCD_WIDTH; #endif } while (dst < row_end); ysrc += stride; usrc -= width >> 1; vsrc -= width >> 1; #if LCD_WIDTH >= LCD_HEIGHT row_end += LCD_WIDTH; dst += LCD_WIDTH - width; #else row_end -= 1; dst -= LCD_WIDTH*width + 1; #endif do { int y, cb, cr, rv, guv, bu, r, g, b; y = YFAC*(*ysrc++ - 16); cb = *usrc++ - 128; cr = *vsrc++ - 128; rv = RVFAC*cr; guv = GUFAC*cb + GVFAC*cr; bu = BUFAC*cb; r = y + rv; g = y + guv; b = y + bu; if ((unsigned)(r | g | b) > 64*256-1) { r = clamp(r, 0, 64*256-1); g = clamp(g, 0, 64*256-1); b = clamp(b, 0, 64*256-1); } *dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9); #if LCD_WIDTH >= LCD_HEIGHT dst++; #else dst += LCD_WIDTH; #endif y = YFAC*(*ysrc++ - 16); r = y + rv; g = y + guv; b = y + bu; if ((unsigned)(r | g | b) > 64*256-1) { r = clamp(r, 0, 64*256-1); g = clamp(g, 0, 64*256-1); b = clamp(b, 0, 64*256-1); } *dst = LCD_RGBPACK_LCD(r >> 9, g >> 8, b >> 9); #if LCD_WIDTH >= LCD_HEIGHT dst++; #else dst += LCD_WIDTH; #endif } while (dst < row_end); ysrc += stride; usrc += stride >> 1; vsrc += stride >> 1; #if LCD_WIDTH >= LCD_HEIGHT row_end += LCD_WIDTH; dst += LCD_WIDTH - width; #else row_end -= 1; dst -= LCD_WIDTH*width + 1; #endif } while (--linecounter > 0); #if LCD_WIDTH >= LCD_HEIGHT lcd_update_rect(x, y, width, height); #else lcd_update_rect(LCD_WIDTH - y - height, x, height, width); #endif }