/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2021 by James Buren (libflate adaptations for RockBox) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* Copyright 2021 Plan 9 Foundation * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "inflate.h" #include #include #include "adler32.h" #include "crc32.h" #include "system.h" enum { INFLATE_BUFFER_SIZE = 32768, INFLATE_SYMBOL_MAX = 288, INFLATE_OFFSET_MAX = 32, INFLATE_CODELEN_MAX = 19, INFLATE_HUFF_BITS = 17, INFLATE_FLAT_BITS = 7, INFLATE_SYMBOL_BITS = 7, INFLATE_OFFSET_BITS = 6, INFLATE_CODELEN_BITS = 6, }; struct inflate_huff { uint32_t max_bits; uint32_t min_bits; uint32_t flat_mask; uint32_t flat[1 << INFLATE_FLAT_BITS]; uint32_t max_code[INFLATE_HUFF_BITS]; uint32_t last[INFLATE_HUFF_BITS]; uint32_t decode[INFLATE_SYMBOL_MAX]; }; struct inflate { uint8_t in[INFLATE_BUFFER_SIZE]; uint8_t out[INFLATE_BUFFER_SIZE]; union { struct { uint8_t len[INFLATE_SYMBOL_MAX]; uint8_t off[INFLATE_OFFSET_MAX]; }; uint8_t combo[INFLATE_SYMBOL_MAX + INFLATE_OFFSET_MAX]; }; uint8_t clen[INFLATE_CODELEN_MAX]; struct inflate_huff lentab; struct inflate_huff offtab; struct inflate_huff clentab; uint32_t bits[INFLATE_HUFF_BITS]; uint32_t codes[INFLATE_HUFF_BITS]; }; #define INFLATE_FILL(E) do { \ const uint32_t _size = read(is, sizeof(it->in), rctx); \ if (_size == 0) { \ rv = (E); \ goto bail; \ } \ ip = is; \ ie = is + _size; \ } while (0) #define INFLATE_FLUSH(E) do { \ const uint32_t _size = (op - os); \ if (write(os, _size, wctx) != _size) { \ rv = (E); \ goto bail; \ } \ flushed = true; \ if (st == INFLATE_ZLIB) \ chksum = adler_32(os, _size, chksum); \ else if (st == INFLATE_GZIP) \ chksum = crc_32r(os, _size, chksum); \ op = os; \ } while (0) #define INFLATE_GET_BYTE(E,C) do { \ if (ip == ie) \ INFLATE_FILL(E); \ (C) = ip[0]; \ ++ip; \ } while (0) #define INFLATE_PUT_BYTE(E,B) do { \ if (op == oe) \ INFLATE_FLUSH(E); \ op[0] = (B); \ ++op; \ } while (0) #define INFLATE_FILL_BITS(E,N) do { \ while ((N) > nbits) { \ uint8_t _byte; \ INFLATE_GET_BYTE(E, _byte); \ sreg |= (_byte << nbits); \ nbits += 8; \ } \ } while (0) #define INFLATE_CONSUME_BITS(N) do { \ sreg >>= (N); \ nbits -= (N); \ } while (0) #define INFLATE_EXTRACT_BITS(N,B) do { \ (B) = (sreg & ((1 << (N)) - 1)); \ INFLATE_CONSUME_BITS(N); \ } while (0) #define INFLATE_CHECK_LENGTH(E,N) do { \ if ((N) > (ie - ip)) { \ rv = (E); \ goto bail; \ } \ } while (0) #define INFLATE_REVERSE(C,B) ({ \ uint32_t _c = (C); \ _c <<= (16 - (B)); \ ((revtab[_c >> 8]) | (revtab[_c & 0xff] << 8)); \ }) #define INFLATE_DECODE(E,H) ({ \ __label__ _found; \ uint32_t _c = (H)->flat[sreg & (H)->flat_mask]; \ uint32_t _b = (_c & 0xff); \ uint32_t _code; \ if (_b == 0xff) { \ for (_b = (_c >> 8); _b <= (H)->max_bits; _b++) { \ _c = (revtab[sreg & 0xff] << 8); \ _c |= (revtab[(sreg >> 8) & 0xff]); \ _c >>= (16 - _b); \ if (_c <= (H)->max_code[_b]) { \ _code = (H)->decode[(H)->last[_b] - _c]; \ goto _found; \ } \ } \ rv = (E); \ goto bail; \ } \ _code = (_c >> 8); \ _found: \ INFLATE_CONSUME_BITS(_b); \ _code; \ }) static int inflate_blocks(struct inflate* it, int st, inflate_reader read, void* rctx, inflate_writer write, void* wctx) { int rv = 0; uint8_t* is = it->in; uint8_t* ip; uint8_t* ie; uint8_t* os = it->out; uint8_t* op = os; uint8_t* oe = os + sizeof(it->out); bool flushed = false; uint32_t chksum; uint32_t nbits = 0; uint32_t sreg = 0; uint32_t i; uint32_t j; bool final; uint8_t type; INFLATE_FILL(-1); if (st == INFLATE_ZLIB) { uint16_t header; INFLATE_CHECK_LENGTH(-2, 2); header = (ip[0] << 8 | ip[1]); ip += 2; if ((header % 31) != 0) { rv = -3; goto bail; } if (((header & 0xf000) >> 12) > 7) { rv = -4; goto bail; } if (((header & 0x0f00) >> 8) != 8) { rv = -5; goto bail; } if (((header & 0x0020) >> 5) != 0) { rv = -6; goto bail; } chksum = 1; } else if (st == INFLATE_GZIP) { uint8_t flg; INFLATE_CHECK_LENGTH(-7, 10); if (ip[0] != 0x1f || ip[1] != 0x8b) { rv = -8; goto bail; } if (ip[2] != 8) { rv = -9; goto bail; } flg = ip[3]; if ((flg & 0xe0) != 0) { rv = -10; goto bail; } ip += 10; chksum = 0xffffffff; if ((flg & 0x04) != 0) { uint16_t xlen; INFLATE_CHECK_LENGTH(-11, 2); xlen = (ip[0] | ip[1] << 8); ip += 2; while (xlen >= (ie - ip)) { xlen -= (ie - ip); if ((flg & 0x02) != 0) chksum = crc_32r(is, ie - is, chksum); INFLATE_FILL(-12); } ip += xlen; } if ((flg & 0x08) != 0) { while (ip++[0] != '\0') { if (ip == ie) { if ((flg & 0x02) != 0) chksum = crc_32r(is, ie - is, chksum); INFLATE_FILL(-13); } } } if ((flg & 0x10) != 0) { while (ip++[0] != '\0') { if (ip == ie) { if ((flg & 0x02) != 0) chksum = crc_32r(is, ie - is, chksum); INFLATE_FILL(-14); } } } if ((flg & 0x02) != 0) { uint16_t crc16; INFLATE_CHECK_LENGTH(-15, 2); crc16 = (ip[0] | ip[1] << 8); chksum = crc_32r(is, ip - is, chksum); chksum &= 0xffff; chksum ^= 0xffff; if (crc16 != chksum) { rv = -16; goto bail; } ip += 2; } chksum = 0xffffffff; } else { chksum = 0; } do { INFLATE_FILL_BITS(-17, 3); final = (sreg & 0x01); type = ((sreg & 0x06) >> 1); INFLATE_CONSUME_BITS(3); if (type == 0) { uint8_t header[4]; uint32_t len; uint32_t clen; INFLATE_CONSUME_BITS(nbits & 0x07); for (i = 0; i < 4; i++) { if (nbits != 0) INFLATE_EXTRACT_BITS(8, header[i]); else INFLATE_GET_BYTE(-18, header[i]); } len = (header[0] | (header[1] << 8)); clen = (header[2] | (header[3] << 8)) ^ 0xffff; if (len != clen) { rv = -19; goto bail; } while (len != 0) { if (ip == ie) INFLATE_FILL(-20); if (op == oe) INFLATE_FLUSH(-21); j = MIN(len, MIN((uint32_t) (ie - ip), (uint32_t) (oe - op))); for (i = 0; i < j; i++) op[i] = ip[i]; len -= j; ip += j; op += j; } } else if (type == 3) { rv = -22; goto bail; } else { static const uint8_t revtab[256] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, }; uint8_t* tab[3]; uint32_t tab_lens[3]; uint32_t tab_bits[3]; struct inflate_huff* tab_huffs[3] = { &it->lentab, &it->offtab, &it->clentab, }; uint32_t c; uint32_t k; if (type == 2) { static const uint32_t min_tab_sizes[3] = { 257, 1, 4, }; static const uint32_t min_tab_bits[3] = { 5, 5, 4, }; static const uint32_t clen_order[INFLATE_CODELEN_MAX] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, }; INFLATE_FILL_BITS(-23, 14); for (i = 0; i < 3; i++) { INFLATE_EXTRACT_BITS(min_tab_bits[i], tab_lens[i]); tab_lens[i] += min_tab_sizes[i]; } tab[2] = it->clen; for (i = 0; i < INFLATE_CODELEN_MAX; i++) tab[2][i] = 0; for (i = 0; i < tab_lens[2]; i++) { INFLATE_FILL_BITS(-24, 3); INFLATE_EXTRACT_BITS(3, tab[2][clen_order[i]]); } tab[0] = it->combo; tab_bits[0] = INFLATE_SYMBOL_BITS; tab[1] = tab[0] + tab_lens[0]; tab_bits[1] = INFLATE_OFFSET_BITS; tab_lens[2] = INFLATE_CODELEN_MAX; tab_bits[2] = INFLATE_CODELEN_BITS; } else { tab[0] = it->len; for (i = 0; i < 144; i++) tab[0][i] = 8; for (; i < 256; i++) tab[0][i] = 9; for (; i < 280; i++) tab[0][i] = 7; for (; i < INFLATE_SYMBOL_MAX; i++) tab[0][i] = 8; tab_lens[0] = INFLATE_SYMBOL_MAX; tab_bits[0] = INFLATE_FLAT_BITS; tab[1] = it->off; for (i = 0; i < INFLATE_OFFSET_MAX; i++) tab[1][i] = 5; tab_lens[1] = INFLATE_OFFSET_MAX; tab_bits[1] = INFLATE_FLAT_BITS; } for(; type != 0xff; --type) { const uint8_t* hb = tab[type]; uint32_t hb_len = tab_lens[type]; uint32_t flat_bits = tab_bits[type]; struct inflate_huff* h = tab_huffs[type]; uint32_t* bits = it->bits; uint32_t* codes = it->codes; uint32_t max_bits = 0; uint32_t min_bits = INFLATE_HUFF_BITS + 1; uint32_t min_code; uint32_t b; uint32_t code; uint32_t fc; uint32_t ec; for (i = 0; i < INFLATE_HUFF_BITS; i++) bits[i] = 0; for (i = 0; i < hb_len; i++) { b = hb[i]; if (b != 0) { bits[b]++; if (b < min_bits) min_bits = b; if (b > max_bits) max_bits = b; } } if (max_bits == 0) { h->flat_mask = h->min_bits = h->max_bits = 0; goto table_done; } h->max_bits = max_bits; for (b = c = code = 0; b <= max_bits; b++) { h->last[b] = c; c += bits[b]; min_code = (code << 1); codes[b] = min_code; code = (min_code + bits[b]); if (code > (1U << b)) { rv = -25; goto bail; } h->max_code[b] = (code - 1); h->last[b] += (code - 1); } if (flat_bits > max_bits) flat_bits = max_bits; h->flat_mask = ((1 << flat_bits) - 1); if (min_bits > flat_bits) min_bits = flat_bits; h->min_bits = min_bits; for (i = 0, b = (1 << flat_bits); i < b; i++) h->flat[i] = 0xffffffff; for (b = max_bits; b > flat_bits; b--) { code = h->max_code[b]; if (code == 0xffffffff) break; min_code = ((code + 1) - bits[b]); min_code >>= (b - flat_bits); code >>= (b - flat_bits); for (; min_code <= code; min_code++) h->flat[INFLATE_REVERSE(min_code, flat_bits)] = ((b << 8) | 0xff); } for (i = 0; i < hb_len; i++) { b = hb[i]; if (b == 0) continue; c = codes[b]++; if (b <= flat_bits) { code = ((i << 8) | b); ec = ((c + 1) << (flat_bits - b)); if (ec > (1U << flat_bits)) { rv = -26; goto bail; } for (fc = (c << (flat_bits - b)); fc < ec; fc++) h->flat[INFLATE_REVERSE(fc, flat_bits)] = code; } if (b > min_bits) { c = h->last[b] - c; if (c >= hb_len) { rv = -27; goto bail; } h->decode[c] = i; } } table_done: if (type == 2) { static const uint32_t bits[3] = { 2, 3, 7, }; static const uint32_t bases[3] = { 3, 3, 11, }; for (i = 0, j = tab_lens[0] + tab_lens[1]; i < j; ) { uint32_t len; uint8_t byte; INFLATE_FILL_BITS(-28, h->max_bits); c = INFLATE_DECODE(-29, h); if (c < 16) { tab[0][i++] = c; continue; } c -= 16; if (c == 0 && i == 0) { rv = -30; goto bail; } INFLATE_FILL_BITS(-31, bits[c]); INFLATE_EXTRACT_BITS(bits[c], len); len += bases[c]; if ((i + len) > j) { rv = -32; goto bail; } byte = ((c == 0) ? tab[0][i - 1] : 0); for (k = 0; k < len; k++) tab[0][i + k] = byte; i += len; } } } while (1) { static const uint32_t lenbase[INFLATE_SYMBOL_MAX - 257] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0, }; static const uint32_t lenextra[INFLATE_SYMBOL_MAX - 257] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, }; static const uint32_t offbase[INFLATE_OFFSET_MAX] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0, }; static const uint32_t offextra[INFLATE_OFFSET_MAX] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 0, 0, }; uint32_t len; uint32_t off; uint8_t* cp; INFLATE_FILL_BITS(-33, tab_huffs[0]->max_bits); c = INFLATE_DECODE(-34, tab_huffs[0]); if (c < 256) { INFLATE_PUT_BYTE(-35, c); continue; } if (c == 256) break; if (c > 285) { rv = -36; goto bail; } c -= 257; INFLATE_FILL_BITS(-37, lenextra[c]); INFLATE_EXTRACT_BITS(lenextra[c], len); len += lenbase[c]; INFLATE_FILL_BITS(-38, tab_huffs[1]->max_bits); c = INFLATE_DECODE(-39, tab_huffs[1]); if (c > 29) { rv = -40; goto bail; } INFLATE_FILL_BITS(-41, offextra[c]); INFLATE_EXTRACT_BITS(offextra[c], off); off += offbase[c]; cp = op - off; if (cp < os) { if (!flushed) { rv = -42; goto bail; } cp += sizeof(it->out); } while (len != 0) { if (op == oe) INFLATE_FLUSH(-43); if (cp == oe) cp = os; j = MIN(len, MIN((uint32_t) (oe - op), (uint32_t) (oe - cp))); for (i = 0; i < j; i++) op[i] = cp[i]; op += j; cp += j; len -= j; } } } } while (!final); INFLATE_FLUSH(-44); if (st != INFLATE_RAW) { uint8_t header[4]; uint32_t chksum2; INFLATE_CONSUME_BITS(nbits & 0x07); for (i = 0; i < 4; i++) { if (nbits != 0) INFLATE_EXTRACT_BITS(8, header[i]); else INFLATE_GET_BYTE(-45, header[i]); } if (st == INFLATE_ZLIB) { chksum2 = ((header[0] << 24) | (header[1] << 16) | (header[2] << 8) | (header[3] << 0)); if (chksum != chksum2) { rv = -46; goto bail; } } else if (st == INFLATE_GZIP) { chksum2 = ((header[3] << 24) | (header[2] << 16) | (header[1] << 8) | (header[0] << 0)); if (~chksum != chksum2) { rv = -47; goto bail; } } } bail: return rv; } const uint32_t inflate_size = sizeof(struct inflate); const uint32_t inflate_align = _Alignof(struct inflate); int inflate(struct inflate* it, int st, inflate_reader read, void* rctx, inflate_writer write, void* wctx) { if (it == NULL || read == NULL || write == NULL || st < 0 || st > 2 || (((uintptr_t) it) & (_Alignof(struct inflate) - 1)) != 0) return -48; return inflate_blocks(it, st, read, rctx, write, wctx); } static uint32_t inflate_buffer_rw(struct inflate_bufferctx* c, void* dst, const void* src, uint32_t block_size) { size_t size_left = c->end - c->buf; size_t copy_size = MIN((size_t)block_size, size_left); memcpy(dst, src, copy_size); c->buf += copy_size; return copy_size; } uint32_t inflate_buffer_reader(void* block, uint32_t block_size, void* ctx) { struct inflate_bufferctx* c = ctx; return inflate_buffer_rw(c, block, c->buf, block_size); } uint32_t inflate_buffer_writer(const void* block, uint32_t block_size, void* ctx) { struct inflate_bufferctx* c = ctx; return inflate_buffer_rw(c, c->buf, block, block_size); } uint32_t inflate_getsize_writer(const void* block, uint32_t block_size, void* ctx) { (void)block; size_t* size = ctx; *size += block_size; return block_size; }