/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2004 Matthias Wientapper * Heavily extended 2005 Jens Arnold * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "fractal_sets.h" #include "mandelbrot_set.h" #define BUTTON_YIELD_TIMEOUT (HZ / 4) #ifdef USEGSLIB static unsigned char imgbuffer[LCD_HEIGHT]; #else static fb_data imgbuffer[LCD_HEIGHT]; #endif #ifdef USEGSLIB #define LCOLOR(iter) ((iter ^ 7) << 5) #else /* * Spread iter's colors over color range. * 345 (=15*26-45) is max_iter maximal value * This implementation ignores pixel format, thus it is not uniformly spread */ #if LCD_DEPTH > 24 /* when LCD_DEPTH is 32 casting to 64bit intermediate is needed to prevent * overflow and warning 'left shift count >= width of type' */ #define LCOLOR(iter) ((unsigned int)(((unsigned long long)iter << LCD_DEPTH) / 345)) #else #define LCOLOR(iter) ((iter << LCD_DEPTH) / 345) #endif #endif #ifdef HAVE_LCD_COLOR #define COLOR(iter) FB_SCALARPACK(LCOLOR(iter)) #define CONVERGENCE_COLOR FB_RGBPACK(0, 0, 0) #else /* greyscale */ #define COLOR(iter) (unsigned char)LCOLOR(iter) #define CONVERGENCE_COLOR 0 #endif #if CONFIG_LCD == LCD_SSD1815 /* Recorder, Ondio: pixel_height == 1.25 * pixel_width */ #define MB_HEIGHT (LCD_HEIGHT*5/4) #else /* square pixels */ #define MB_HEIGHT LCD_HEIGHT #endif #define MB_XOFS (-0x03000000L) /* -0.75 (s5.26) */ #if (3000 * MB_HEIGHT / LCD_WIDTH) >= 2400 /* width is limiting factor */ #define MB_XFAC (0x06000000LL) /* 1.5 (s5.26) */ #define MB_YFAC (MB_XFAC*MB_HEIGHT / LCD_WIDTH) #else /* height is limiting factor */ #define MB_YFAC (0x04cccccdLL) /* 1.2 (s5.26) */ #define MB_XFAC (MB_YFAC*LCD_WIDTH / MB_HEIGHT) #endif #ifndef USEGSLIB #define UPDATE_FREQ (HZ/50) #endif /* fixed point format s5.26: sign, 5 bits integer part, 26 bits fractional part */ struct fractal_ops *ops; long x_min; long x_max; long x_step; long x_delta; long y_min; long y_max; long y_step; long y_delta; int step_log2; unsigned max_iter; static void mandelbrot_init(void); static int mandelbrot_calc_low_prec(struct fractal_rect *rect, int (*button_yield_cb)(void *), void *button_yield_ctx); static int mandelbrot_calc_high_prec(struct fractal_rect *rect, int (*button_yield_cb)(void *), void *button_yield_ctx); static void mandelbrot_move(int dx, int dy); static int mandelbrot_zoom(int factor); static int mandelbrot_precision(int d); struct fractal_ops mandelbrot_ops = { .init = mandelbrot_init, .calc = NULL, .move = mandelbrot_move, .zoom = mandelbrot_zoom, .precision = mandelbrot_precision, }; #define LOG2_OUT_OF_BOUNDS -32767 static int ilog2_fp(long value) /* calculate integer log2(value_fp_6.26) */ { int i = 0; if (value <= 0) { return LOG2_OUT_OF_BOUNDS; } else if (value > (1L << 26)) { while (value >= (2L << 26)) { value >>= 1; i++; } } else { while (value < (1L << 26)) { value <<= 1; i--; } } return i; } static int recalc_parameters(void) { x_step = (x_max - x_min) / LCD_WIDTH; y_step = (y_max - y_min) / LCD_HEIGHT; step_log2 = ilog2_fp(MIN(x_step, y_step)); if (step_log2 == LOG2_OUT_OF_BOUNDS) return 1; /* out of bounds */ x_delta = X_DELTA(x_step); y_delta = Y_DELTA(y_step); max_iter = MAX(15, -15 * step_log2 - 45); ops->calc = (step_log2 <= -10) ? mandelbrot_calc_high_prec : mandelbrot_calc_low_prec; return 0; } static void mandelbrot_init(void) { ops = &mandelbrot_ops; x_min = MB_XOFS - MB_XFAC; x_max = MB_XOFS + MB_XFAC; y_min = -MB_YFAC; y_max = MB_YFAC; recalc_parameters(); } static int mandelbrot_calc_low_prec(struct fractal_rect *rect, int (*button_yield_cb)(void *), void *button_yield_ctx) { #ifndef USEGSLIB long next_update = *rb->current_tick; int last_px = rect->px_min; #endif unsigned n_iter; long a32, b32; short x, x2, y, y2, a, b; int p_x, p_y; unsigned long last_yield = *rb->current_tick; unsigned long last_button_yield = *rb->current_tick; a32 = x_min + x_step * rect->px_min; for (p_x = rect->px_min; p_x < rect->px_max; p_x++) { a = a32 >> 16; b32 = y_min + y_step * (LCD_HEIGHT - rect->py_max); for (p_y = rect->py_max - 1; p_y >= rect->py_min; p_y--) { b = b32 >> 16; x = a; y = b; n_iter = 0; while (++n_iter <= max_iter) { x2 = MULS16_ASR10(x, x); y2 = MULS16_ASR10(y, y); if (x2 + y2 > (4<<10)) break; y = 2 * MULS16_ASR10(x, y) + b; x = x2 - y2 + a; } if (n_iter > max_iter) imgbuffer[p_y] = CONVERGENCE_COLOR; else imgbuffer[p_y] = COLOR(n_iter); /* be nice to other threads: * if at least one tick has passed, yield */ if (TIME_AFTER(*rb->current_tick, last_yield)) { rb->yield(); last_yield = *rb->current_tick; } if (TIME_AFTER(*rb->current_tick, last_button_yield)) { if (button_yield_cb(button_yield_ctx)) { #ifndef USEGSLIB /* update screen part that was changed since last yield */ rb->lcd_update_rect(last_px, rect->py_min, p_x - last_px + 1, rect->py_max - rect->py_min); #endif rect->px_min = (p_x == 0) ? 0 : p_x - 1; return 1; } last_button_yield = *rb->current_tick + BUTTON_YIELD_TIMEOUT; } b32 += y_step; } #ifdef USEGSLIB grey_ub_gray_bitmap_part(imgbuffer, 0, rect->py_min, 1, p_x, rect->py_min, 1, rect->py_max - rect->py_min); #else rb->lcd_bitmap_part(imgbuffer, 0, rect->py_min, 1, p_x, rect->py_min, 1, rect->py_max - rect->py_min); if ((p_x == rect->px_max - 1) || TIME_AFTER(*rb->current_tick, next_update)) { next_update = *rb->current_tick + UPDATE_FREQ; /* update screen part that was changed since last yield */ rb->lcd_update_rect(last_px, rect->py_min, p_x - last_px + 1, rect->py_max - rect->py_min); last_px = p_x; } #endif a32 += x_step; } rect->valid = 0; return 0; } static int mandelbrot_calc_high_prec(struct fractal_rect *rect, int (*button_yield_cb)(void *), void *button_yield_ctx) { #ifndef USEGSLIB long next_update = *rb->current_tick; int last_px = rect->px_min; #endif unsigned n_iter; long x, x2, y, y2, a, b; int p_x, p_y; unsigned long last_yield = *rb->current_tick; unsigned long last_button_yield = *rb->current_tick; MULS32_INIT(); a = x_min + x_step * rect->px_min; for (p_x = rect->px_min; p_x < rect->px_max; p_x++) { b = y_min + y_step * (LCD_HEIGHT - rect->py_max); for (p_y = rect->py_max - 1; p_y >= rect->py_min; p_y--) { x = a; y = b; n_iter = 0; while (++n_iter <= max_iter) { x2 = MULS32_ASR26(x, x); y2 = MULS32_ASR26(y, y); if (x2 + y2 > (4L<<26)) break; y = 2 * MULS32_ASR26(x, y) + b; x = x2 - y2 + a; } if (n_iter > max_iter) imgbuffer[p_y] = CONVERGENCE_COLOR; else imgbuffer[p_y] = COLOR(n_iter); /* be nice to other threads: * if at least one tick has passed, yield */ if (TIME_AFTER(*rb->current_tick, last_yield)) { rb->yield(); last_yield = *rb->current_tick; } if (TIME_AFTER(*rb->current_tick, last_button_yield)) { if (button_yield_cb(button_yield_ctx)) { #ifndef USEGSLIB /* update screen part that was changed since last yield */ rb->lcd_update_rect(last_px, rect->py_min, p_x - last_px + 1, rect->py_max - rect->py_min); #endif rect->px_min = (p_x == 0) ? 0 : p_x - 1; return 1; } last_button_yield = *rb->current_tick + BUTTON_YIELD_TIMEOUT; } b += y_step; } #ifdef USEGSLIB grey_ub_gray_bitmap_part(imgbuffer, 0, rect->py_min, 1, p_x, rect->py_min, 1, rect->py_max - rect->py_min); #else rb->lcd_bitmap_part(imgbuffer, 0, rect->py_min, 1, p_x, rect->py_min, 1, rect->py_max - rect->py_min); if ((p_x == rect->px_max - 1) || TIME_AFTER(*rb->current_tick, next_update)) { next_update = *rb->current_tick + UPDATE_FREQ; /* update screen part that was changed since last yield */ rb->lcd_update_rect(last_px, rect->py_min, p_x - last_px + 1, rect->py_max - rect->py_min); last_px = p_x; } #endif a += x_step; } rect->valid = 0; return 0; } static void mandelbrot_move(int x_factor, int y_factor) { long dx = (long)x_factor * x_delta; long dy = (long)y_factor * y_delta; x_min += dx; x_max += dx; y_min += dy; y_max += dy; } static int mandelbrot_zoom(int factor) { int res; long factor_x = (long)factor * x_delta; long factor_y = (long)factor * y_delta; x_min += factor_x; x_max -= factor_x; y_min += factor_y; y_max -= factor_y; res = recalc_parameters(); if (res) /* zoom not possible, revert */ { mandelbrot_zoom(-factor); } return res; } static int mandelbrot_precision(int d) { int changed = 0; /* Increase precision */ for (; d > 0; d--) { max_iter += max_iter / 2; changed = 1; } /* Decrease precision */ for (; d < 0 && max_iter >= 15; d++) { max_iter -= max_iter / 3; changed = 1; } return changed; }