/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 Rob Purchase * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "system.h" #include "kernel.h" #include "nand.h" #include "ata-nand-target.h" #include "led.h" #include "panic.h" #include "nand_id.h" #include "storage.h" #include "fs_defines.h" /* ECC on read is implemented on the assumption that MLC-style 4-bit correction is always used regardless of NAND chip type. This assumption is true for at least D2 (MLC) and M200 (SLC). */ #define USE_ECC_CORRECTION /* for compatibility */ int ata_spinup_time = 0; long last_disk_activity = -1; /** static, private data **/ static bool initialized = false; static long next_yield = 0; #define MIN_YIELD_PERIOD 1000 static struct mutex ata_mtx SHAREDBSS_ATTR; #if defined(COWON_D2) #define FTL_V2 #define MAX_WRITE_CACHES 8 #else #define FTL_V1 #define MAX_WRITE_CACHES 4 #endif /* Sector type identifiers - main data area */ #define SECTYPE_MAIN_LPT 0x12 #define SECTYPE_MAIN_DATA 0x13 #define SECTYPE_MAIN_RANDOM_CACHE 0x15 #define SECTYPE_MAIN_INPLACE_CACHE 0x17 /* We don't touch the hidden area at all - these are for reference */ #define SECTYPE_HIDDEN_LPT 0x22 #define SECTYPE_HIDDEN_DATA 0x23 #define SECTYPE_HIDDEN_RANDOM_CACHE 0x25 #define SECTYPE_HIDDEN_INPLACE_CACHE 0x27 #ifdef FTL_V1 #define SECTYPE_FIRMWARE 0x40 #else #define SECTYPE_FIRMWARE 0xE0 #endif /* Offsets to data within sector's spare area */ #define OFF_CACHE_PAGE_LOBYTE 2 #define OFF_CACHE_PAGE_HIBYTE 3 #define OFF_SECTOR_TYPE 4 #ifdef FTL_V2 #define OFF_LOG_SEG_LOBYTE 7 #define OFF_LOG_SEG_HIBYTE 6 #else #define OFF_LOG_SEG_LOBYTE 6 #define OFF_LOG_SEG_HIBYTE 7 #endif /* Chip characteristics, initialised by nand_get_chip_info() */ static struct nand_info* nand_data = NULL; static int total_banks = 0; static int pages_per_bank = 0; static int sectors_per_page = 0; static int bytes_per_segment = 0; static int sectors_per_segment = 0; static int segments_per_bank = 0; static int pages_per_segment = 0; /* Maximum values for static buffers */ #define MAX_PAGE_SIZE 4096 #define MAX_SPARE_SIZE 128 #define MAX_BLOCKS_PER_BANK 8192 #define MAX_PAGES_PER_BLOCK 128 #define MAX_BANKS 4 #define MAX_BLOCKS_PER_SEGMENT 4 #define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / MAX_BLOCKS_PER_SEGMENT) /* Logical/Physical translation table */ struct lpt_entry { short bank; short phys_segment; }; #ifdef BOOTLOADER static struct lpt_entry lpt_lookup[MAX_SEGMENTS]; #else /* core_alloc()'d in nand_init() when the correct size has been determined */ #include "core_alloc.h" static int lpt_handle; #endif /* Write Caches */ struct write_cache { short log_segment; short inplace_bank; short inplace_phys_segment; short inplace_pages_used; short random_bank; short random_phys_segment; short page_map[MAX_PAGES_PER_BLOCK * MAX_BLOCKS_PER_SEGMENT]; }; static struct write_cache write_caches[MAX_WRITE_CACHES]; static int write_caches_in_use = 0; /* Conversion functions */ static int phys_segment_to_page_addr(int phys_segment, int page_in_seg) { int page_addr = 0; switch (nand_data->planes) { case 1: { page_addr = (phys_segment * nand_data->pages_per_block); break; } case 2: case 4: { page_addr = phys_segment * nand_data->pages_per_block * 2; if (page_in_seg & 1) { /* Data is located in block+1 */ page_addr += nand_data->pages_per_block; } if (nand_data->planes == 4 && page_in_seg & 2) { /* Data is located in 2nd half of bank */ page_addr += (nand_data->blocks_per_bank/2) * nand_data->pages_per_block; } break; } } page_addr += (page_in_seg / nand_data->planes); return page_addr; } /* NAND physical access functions */ static void nand_chip_select(int bank) { if (bank == -1) { /* Disable both chip selects */ NAND_GPIO_CLEAR(CS_GPIO_BIT); NFC_CTRL |= NFC_CS0 | NFC_CS1; } else { /* NFC chip select */ if (bank & 1) { NFC_CTRL &= ~NFC_CS0; NFC_CTRL |= NFC_CS1; } else { NFC_CTRL |= NFC_CS0; NFC_CTRL &= ~NFC_CS1; } /* Secondary chip select */ if (bank & 2) NAND_GPIO_SET(CS_GPIO_BIT); else NAND_GPIO_CLEAR(CS_GPIO_BIT); } } static void nand_read_id(int bank, unsigned char* id_buf) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Reset NAND controller */ NFC_RST = 0; /* Set slow cycle timings since the chip is as yet unidentified */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Reset command */ NFC_CMD = 0xFF; /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Read ID command, single address cycle */ NFC_CMD = 0x90; NFC_SADDR = 0x00; /* Read the 5 chip ID bytes */ for (i = 0; i < 5; i++) { id_buf[i] = NFC_SDATA & 0xFF; } nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_read_uid(int bank, unsigned int* uid_buf) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Set cycle timing (stp = 1, pw = 3, hold = 1) */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Undocumented (SAMSUNG specific?) commands set the chip into a special mode allowing a normally-hidden UID block to be read. */ NFC_CMD = 0x30; NFC_CMD = 0x65; /* Read command */ NFC_CMD = 0x00; /* Write row/column address */ for (i = 0; i < nand_data->col_cycles; i++) NFC_SADDR = 0; for (i = 0; i < nand_data->row_cycles; i++) NFC_SADDR = 0; /* End of read */ NFC_CMD = 0x30; /* Wait until complete */ while (!(NFC_CTRL & NFC_READY)) {}; /* Copy data to buffer (data repeats after 8 words) */ for (i = 0; i < 8; i++) { uid_buf[i] = NFC_WDATA; } /* Reset the chip back to normal mode */ NFC_CMD = 0xFF; nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_setup_read(int bank, int row, int column) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Set cycle timing (stp = 1, pw = 3, hold = 1) */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Read command */ NFC_CMD = 0x00; /* Write column address */ for (i = 0; i < nand_data->col_cycles; i++) { NFC_SADDR = column & 0xFF; column = column >> 8; } /* Write row address */ for (i = 0; i < nand_data->row_cycles; i++) { NFC_SADDR = row & 0xFF; row = row >> 8; } /* End of read command */ NFC_CMD = 0x30; /* Wait until complete */ while (!(NFC_CTRL & NFC_READY)) {}; } static void nand_end_read(void) { nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_read_raw(int bank, int row, int column, int size, void* buf) { int i; nand_setup_read(bank, row, column); /* Read data into page buffer */ if (((unsigned int)buf & 3) || (size & 3)) { /* Use byte copy since either the buffer or size are not word-aligned */ /* TODO: Byte copy only where necessary (use words for mid-section) */ for (i = 0; i < size; i++) { ((unsigned char*)buf)[i] = NFC_SDATA; } } else { /* Use 4-byte copy as buffer and size are both word-aligned */ for (i = 0; i < (size/4); i++) { ((unsigned int*)buf)[i] = NFC_WDATA; } } nand_end_read(); } static void nand_get_chip_info(void) { unsigned char manuf_id; unsigned char id_buf[8]; /* Read chip id from bank 0 */ nand_read_id(0, id_buf); manuf_id = id_buf[0]; /* Identify the chip geometry */ nand_data = nand_identify(id_buf); if (nand_data == NULL) { panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]); } pages_per_bank = nand_data->blocks_per_bank * nand_data->pages_per_block; segments_per_bank = nand_data->blocks_per_bank / nand_data->planes; bytes_per_segment = nand_data->page_size * nand_data->pages_per_block * nand_data->planes; sectors_per_page = nand_data->page_size / SECTOR_SIZE; sectors_per_segment = bytes_per_segment / SECTOR_SIZE; pages_per_segment = sectors_per_segment / sectors_per_page; /* Establish how many banks are present */ nand_read_id(1, id_buf); if (id_buf[0] == manuf_id) { /* Bank 1 is populated, now check if banks 2/3 are valid */ nand_read_id(2, id_buf); if (id_buf[0] == manuf_id) { /* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */ unsigned int uid_buf0[8]; unsigned int uid_buf2[8]; nand_read_uid(0, uid_buf0); nand_read_uid(2, uid_buf2); if (memcmp(uid_buf0, uid_buf2, 32) == 0) { /* UIDs match, assume banks 2/3 are shadowing 0/1 */ total_banks = 2; } else { /* UIDs differ, assume banks 2/3 are valid */ total_banks = 4; } } else { /* Bank 2 returned differing id - assume 2/3 are junk */ total_banks = 2; } } else { /* Bank 1 returned differing id - assume it is junk */ total_banks = 1; } /* Sanity checks: 1. "BMP" tag at block 0, page 0, offset [always present] 2. On most D2s, +3 is 'M' and +4 is no. of banks. This is not present on some older players (formatted with early FW?) */ nand_read_raw(0, 0, /* bank, page */ nand_data->page_size, /* offset */ 8, id_buf); /* length, dest */ if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present"); if (id_buf[3] == 'M') { if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch"); } } static bool nand_read_sector_of_phys_page(int bank, int page, int sector, void* buf) { bool ret = true; int i; int page_offset = sector * (SECTOR_SIZE + 16); #ifdef USE_ECC_CORRECTION unsigned long spare_buf[4]; /* Set up the ECC controller to monitor reads from NFC_WDATA */ BCLKCTR |= DEV_ECC; ECC_BASE = (unsigned long)&NFC_WDATA; ECC_CTRL |= ECC_M4EN; ECC_CTRL &= ~ECC_ENC; ECC_CTRL |= ECC_READY; ECC_CLR = 0; #endif /* Read the sector data */ nand_setup_read(bank, page, page_offset); /* Read data into page buffer */ if ((unsigned int)buf & 3) { /* If unaligned, read into a temporary buffer and copy to destination. This way, reads are always done through NFC_WDATA - otherwise they would not be 'seen' by the ECC controller. */ static char temp_buf[SECTOR_SIZE]; unsigned int* ptr = (unsigned int*) temp_buf; for (i = 0; i < (SECTOR_SIZE/4); i++) { *ptr++ = NFC_WDATA; } memcpy(buf, temp_buf, SECTOR_SIZE); } else { /* Use straight word copy as buffer and size are both word-aligned */ unsigned int* ptr = (unsigned int*) buf; for (i = 0; i < (SECTOR_SIZE/4); i++) { *ptr++ = NFC_WDATA; } } #ifdef USE_ECC_CORRECTION /* Stop monitoring before we read the OOB data */ ECC_CTRL &= ~ECC_M4EN; BCLKCTR &= ~DEV_ECC; /* Read a further 4 words (sector OOB data) */ spare_buf[0] = NFC_WDATA; spare_buf[1] = NFC_WDATA; spare_buf[2] = NFC_WDATA; spare_buf[3] = NFC_WDATA; /* Calculate MLC4 ECC using bytes 0,1,8-15 */ BCLKCTR |= DEV_ECC; ECC_CTRL |= ECC_M4EN; MLC_ECC0W = *(unsigned short*)spare_buf; MLC_ECC1W = spare_buf[2]; MLC_ECC2W = spare_buf[3]; while (!(ECC_CTRL & ECC_READY)) {}; int errors = ECC_ERR_NUM & 7; switch (errors) { case 4: /* nothing to correct */ break; case 7: /* fail, can't correct */ ret = false; break; default: /* between 1 and 4 errors */ { int i; unsigned char* char_buf = (unsigned char*)buf; for (i = 0; i < errors + 1; i++) { int offset = 0x207 - ECC_ERRADDR(i); char_buf[offset] ^= ECC_ERRDATA(i); } } } /* Disable ECC block */ ECC_CTRL &= ~ECC_M4EN; BCLKCTR &= ~DEV_ECC; #endif nand_end_read(); return ret; } static bool nand_read_sector_of_phys_segment(int bank, int phys_segment, int page_in_seg, int sector, void* buf) { int page_addr = phys_segment_to_page_addr(phys_segment, page_in_seg); return nand_read_sector_of_phys_page(bank, page_addr, sector, buf); } static bool nand_read_sector_of_logical_segment(int log_segment, int sector, void* buf) { int page_in_segment = sector / sectors_per_page; int sector_in_page = sector % sectors_per_page; #ifndef BOOTLOADER struct lpt_entry* lpt_lookup = core_get_data(lpt_handle); #endif int bank = lpt_lookup[log_segment].bank; int phys_segment = lpt_lookup[log_segment].phys_segment; /* Check if any of the write caches refer to this segment/page. If present we need to read the cached page instead. */ int cache_num = 0; bool found = false; while (!found && cache_num < write_caches_in_use) { if (write_caches[cache_num].log_segment == log_segment) { if (write_caches[cache_num].page_map[page_in_segment] != -1) { /* data is located in random pages cache */ found = true; bank = write_caches[cache_num].random_bank; phys_segment = write_caches[cache_num].random_phys_segment; page_in_segment = write_caches[cache_num].page_map[page_in_segment]; } else if (write_caches[cache_num].inplace_pages_used != -1 && write_caches[cache_num].inplace_pages_used > page_in_segment) { /* data is located in in-place pages cache */ found = true; bank = write_caches[cache_num].inplace_bank; phys_segment = write_caches[cache_num].inplace_phys_segment; } } cache_num++; } return nand_read_sector_of_phys_segment(bank, phys_segment, page_in_segment, sector_in_page, buf); } /* Miscellaneous helper functions */ static inline unsigned char get_sector_type(char* spare_buf) { return spare_buf[OFF_SECTOR_TYPE]; } static inline unsigned short get_log_segment_id(int phys_seg, char* spare_buf) { (void)phys_seg; return ((spare_buf[OFF_LOG_SEG_HIBYTE] << 8) | spare_buf[OFF_LOG_SEG_LOBYTE]) #if defined(FTL_V1) + 984 * (phys_seg / 1024) #endif ; } static inline unsigned short get_cached_page_id(char* spare_buf) { return (spare_buf[OFF_CACHE_PAGE_HIBYTE] << 8) | spare_buf[OFF_CACHE_PAGE_LOBYTE]; } static int find_write_cache(int log_segment) { int i; for (i = 0; i < write_caches_in_use; i++) if (write_caches[i].log_segment == log_segment) return i; return -1; } static void read_random_writes_cache(int bank, int phys_segment) { int page = 0; short log_segment; unsigned char spare_buf[16]; nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page), SECTOR_SIZE, /* offset to first sector's spare */ 16, spare_buf); log_segment = get_log_segment_id(phys_segment, spare_buf); if (log_segment == -1) return; /* Find which cache this is related to */ int cache_no = find_write_cache(log_segment); if (cache_no == -1) { if (write_caches_in_use < MAX_WRITE_CACHES) { cache_no = write_caches_in_use; write_caches_in_use++; } else { panicf("Max NAND write caches reached"); } } write_caches[cache_no].log_segment = log_segment; write_caches[cache_no].random_bank = bank; write_caches[cache_no].random_phys_segment = phys_segment; #ifndef FTL_V1 /* Loop over each page in the phys segment (from page 1 onwards). Read spare for 1st sector, store location of page in array. */ for (page = 1; page < (nand_data->pages_per_block * nand_data->planes); page++) { unsigned short cached_page; nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page), SECTOR_SIZE, /* offset to first sector's spare */ 16, spare_buf); cached_page = get_cached_page_id(spare_buf); if (cached_page != 0xFFFF) write_caches[cache_no].page_map[cached_page] = page; } #endif /* !FTL_V1 */ } static void read_inplace_writes_cache(int bank, int phys_segment) { int page = 0; short log_segment; unsigned char spare_buf[16]; nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page), SECTOR_SIZE, /* offset to first sector's spare */ 16, spare_buf); log_segment = get_log_segment_id(phys_segment, spare_buf); if (log_segment == -1) return; /* Find which cache this is related to */ int cache_no = find_write_cache(log_segment); if (cache_no == -1) { if (write_caches_in_use < MAX_WRITE_CACHES) { cache_no = write_caches_in_use; write_caches_in_use++; } else { panicf("Max NAND write caches reached"); } } write_caches[cache_no].log_segment = log_segment; /* Find how many pages have been written to the new segment */ while (log_segment != -1 && page < (nand_data->pages_per_block * nand_data->planes) - 1) { page++; nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page), SECTOR_SIZE, 16, spare_buf); log_segment = get_log_segment_id(phys_segment, spare_buf); } if (page != 0) { write_caches[cache_no].inplace_bank = bank; write_caches[cache_no].inplace_phys_segment = phys_segment; write_caches[cache_no].inplace_pages_used = page; } } int nand_read_sectors(IF_MD(int drive,) unsigned long start, int incount, void* inbuf) { #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif int ret = 0; mutex_lock(&ata_mtx); led(true); while (incount > 0) { int done = 0; int segment = start / sectors_per_segment; int secmod = start % sectors_per_segment; while (incount > 0 && secmod < sectors_per_segment) { if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf)) { ret = -1; goto nand_read_error; } if (TIME_AFTER(USEC_TIMER, next_yield)) { next_yield = USEC_TIMER + MIN_YIELD_PERIOD; yield(); } inbuf += SECTOR_SIZE; incount--; secmod++; done++; } if (done < 0) { ret = -1; goto nand_read_error; } start += done; } nand_read_error: mutex_unlock(&ata_mtx); led(false); return ret; } int nand_write_sectors(IF_MD(int drive,) unsigned long start, int count, const void* outbuf) { #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif /* TODO: Learn more about TNFTL and implement this one day... */ (void)start; (void)count; (void)outbuf; return -1; } #ifdef HAVE_STORAGE_FLUSH int nand_flush(void) { return 0; } #endif #ifdef STORAGE_GET_INFO void nand_get_info(IF_MD(int drive,) struct storage_info *info) { #ifdef HAVE_MULTIDRIVE (void)drive; /* unused for now */ #endif /* firmware version */ info->revision="0.00"; info->vendor="Rockbox"; info->product="Internal Storage"; /* blocks count */ info->num_sectors = sectors_per_segment * segments_per_bank * total_banks; info->sector_size = SECTOR_SIZE; } #endif int nand_init(void) { int bank, phys_segment, lptbuf_size; unsigned char spare_buf[16]; if (initialized) return 0; mutex_init(&ata_mtx); /* Set GPIO direction for chip select & write protect */ NAND_GPIO_OUT_EN(CS_GPIO_BIT | WE_GPIO_BIT); /* Get chip characteristics and number of banks */ nand_get_chip_info(); #ifndef BOOTLOADER /* Use chip info to allocate the correct size LPT buffer */ lptbuf_size = sizeof(struct lpt_entry) * segments_per_bank * total_banks; lpt_handle = core_alloc("lpt lookup", lptbuf_size); struct lpt_entry* lpt_lookup = core_get_data(lpt_handle); #else /* Use a static array in the bootloader */ lptbuf_size = sizeof(lpt_lookup); #endif memset(lpt_lookup, 0xff, lptbuf_size); memset(write_caches, 0xff, sizeof(write_caches)); write_caches_in_use = 0; /* Scan banks to build up block translation table */ for (bank = 0; bank < total_banks; bank++) { for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++) { /* Read spare bytes from first sector of each segment */ nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0), SECTOR_SIZE, /* offset */ 16, spare_buf); int type = get_sector_type(spare_buf); #ifdef FTL_V2 if (type == SECTYPE_MAIN_INPLACE_CACHE) { /* Since this type of segment is written to sequentially, its job is complete if the final page has been written. In this case we need to treat it as a normal data segment. */ nand_read_raw(bank, phys_segment_to_page_addr (phys_segment, pages_per_segment - 1), SECTOR_SIZE, 16, spare_buf); if (get_sector_type(spare_buf) != 0xff) { type = SECTYPE_MAIN_DATA; } } #endif switch (type) { case SECTYPE_MAIN_DATA: { /* Main data area segment */ unsigned short log_segment = get_log_segment_id(phys_segment, spare_buf); if (log_segment < segments_per_bank * total_banks) { #ifndef BOOTLOADER lpt_lookup = core_get_data(lpt_handle); #endif if (lpt_lookup[log_segment].bank == -1 || lpt_lookup[log_segment].phys_segment == -1) { lpt_lookup[log_segment].bank = bank; lpt_lookup[log_segment].phys_segment = phys_segment; } else { //panicf("duplicate data segment 0x%x!", log_segment); } } break; } case SECTYPE_MAIN_RANDOM_CACHE: { /* Newly-written random page data (Main data area) */ read_random_writes_cache(bank, phys_segment); break; } case SECTYPE_MAIN_INPLACE_CACHE: { /* Newly-written sequential page data (Main data area) */ read_inplace_writes_cache(bank, phys_segment); break; } } } } initialized = true; return 0; } long nand_last_disk_activity(void) { return last_disk_activity; } void nand_sleep(void) { } void nand_spin(void) { } void nand_spindown(int seconds) { (void)seconds; } #ifdef CONFIG_STORAGE_MULTI int nand_num_drives(int first_drive) { /* We don't care which logical drive number we have been assigned */ (void)first_drive; return 1; } void nand_sleepnow(void) { } bool nand_disk_is_active(void) { return false; } int nand_soft_reset(void) { return 0; } int nand_spinup_time(void) { return 0; } void nand_enable(bool onoff) { (void)onoff; } #endif /* CONFIG_STORAGE_MULTI */ int nand_event(long id, intptr_t data) { return storage_event_default_handler(id, data, last_disk_activity, STORAGE_NAND); }