// Nes_Snd_Emu 0.1.8. http://www.slack.net/~ant/ #include "nes_apu.h" /* Copyright (C) 2003-2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" int const amp_range = 15; void Apu_init( struct Nes_Apu* this ) { this->tempo_ = (int)(FP_ONE_TEMPO); this->dmc.apu = this; this->dmc.prg_reader = NULL; this->irq_notifier_ = NULL; Synth_init( &this->square_synth ); Synth_init( &this->triangle.synth ); Synth_init( &this->noise.synth ); Synth_init( &this->dmc.synth ); Square_set_synth( &this->square1, &this->square_synth ); Square_set_synth( &this->square2, &this->square_synth ); this->oscs [0] = &this->square1.osc; this->oscs [1] = &this->square2.osc; this->oscs [2] = &this->triangle.osc; this->oscs [3] = &this->noise.osc; this->oscs [4] = &this->dmc.osc; Apu_output( this, NULL ); Apu_volume( this, (int)FP_ONE_VOLUME ); Apu_reset( this, false, 0 ); } void Apu_enable_nonlinear( struct Nes_Apu* this, int v ) { this->dmc.nonlinear = true; Synth_volume( &this->square_synth, (int)((long long)(1.3 * 0.25751258 / 0.742467605 * 0.25 * FP_ONE_VOLUME) / amp_range * v) ); const int tnd = (int)(0.48 / 202 * 0.75 * FP_ONE_VOLUME); Synth_volume( &this->triangle.synth, 3 * tnd ); Synth_volume( &this->noise.synth, 2 * tnd ); Synth_volume( &this->dmc.synth, tnd ); this->square1 .osc.last_amp = 0; this->square2 .osc.last_amp = 0; this->triangle.osc.last_amp = 0; this->noise .osc.last_amp = 0; this->dmc .osc.last_amp = 0; } void Apu_volume( struct Nes_Apu* this, int v ) { this->dmc.nonlinear = false; Synth_volume( &this->square_synth, (int)((long long)(0.1128 *FP_ONE_VOLUME) * v / amp_range / FP_ONE_VOLUME) ); Synth_volume( &this->triangle.synth,(int)((long long)(0.12765*FP_ONE_VOLUME) * v / amp_range / FP_ONE_VOLUME) ); Synth_volume( &this->noise.synth, (int)((long long)(0.0741 *FP_ONE_VOLUME) * v / amp_range / FP_ONE_VOLUME) ); Synth_volume( &this->dmc.synth, (int)((long long)(0.42545*FP_ONE_VOLUME) * v / 127 / FP_ONE_VOLUME) ); } void Apu_output( struct Nes_Apu* this, struct Blip_Buffer* buffer ) { int i; for ( i = 0; i < apu_osc_count; i++ ) Apu_osc_output( this, i, buffer ); } void Apu_set_tempo( struct Nes_Apu* this, int t ) { this->tempo_ = t; this->frame_period = (this->dmc.pal_mode ? 8314 : 7458); if ( t != (int)FP_ONE_TEMPO ) this->frame_period = (int) ((this->frame_period * FP_ONE_TEMPO) / t) & ~1; // must be even } void Apu_reset( struct Nes_Apu* this, bool pal_mode, int initial_dmc_dac ) { this->dmc.pal_mode = pal_mode; Apu_set_tempo( this, this->tempo_ ); Square_reset( &this->square1 ); Square_reset( &this->square2 ); Triangle_reset( &this->triangle ); Noise_reset( &this->noise ); Dmc_reset( &this->dmc ); this->last_time = 0; this->last_dmc_time = 0; this->osc_enables = 0; this->irq_flag = false; this->earliest_irq_ = apu_no_irq; this->frame_delay = 1; Apu_write_register( this, 0, 0x4017, 0x00 ); Apu_write_register( this, 0, 0x4015, 0x00 ); addr_t addr; for ( addr = apu_io_addr; addr <= 0x4013; addr++ ) Apu_write_register( this, 0, addr, (addr & 3) ? 0x00 : 0x10 ); this->dmc.dac = initial_dmc_dac; if ( !this->dmc.nonlinear ) this->triangle.osc.last_amp = 15; if ( !this->dmc.nonlinear ) // TODO: remove? this->dmc.osc.last_amp = initial_dmc_dac; // prevent output transition } void Apu_irq_changed( struct Nes_Apu* this ) { nes_time_t new_irq = this->dmc.next_irq; if ( this->dmc.irq_flag | this->irq_flag ) { new_irq = 0; } else if ( new_irq > this->next_irq ) { new_irq = this->next_irq; } if ( new_irq != this->earliest_irq_ ) { this->earliest_irq_ = new_irq; if ( this->irq_notifier_ ) this->irq_notifier_( this->irq_data ); } } // frames void Apu_run_until( struct Nes_Apu* this, nes_time_t end_time ) { require( end_time >= this->last_dmc_time ); if ( end_time > Apu_next_dmc_read_time( this ) ) { nes_time_t start = this->last_dmc_time; this->last_dmc_time = end_time; Dmc_run( &this->dmc, start, end_time ); } } static void run_until_( struct Nes_Apu* this, nes_time_t end_time ) { require( end_time >= this->last_time ); if ( end_time == this->last_time ) return; if ( this->last_dmc_time < end_time ) { nes_time_t start = this->last_dmc_time; this->last_dmc_time = end_time; Dmc_run( &this->dmc, start, end_time ); } while ( true ) { // earlier of next frame time or end time nes_time_t time = this->last_time + this->frame_delay; if ( time > end_time ) time = end_time; this->frame_delay -= time - this->last_time; // run oscs to present Square_run( &this->square1, this->last_time, time ); Square_run( &this->square2, this->last_time, time ); Triangle_run( &this->triangle, this->last_time, time ); Noise_run( &this->noise, this->last_time, time ); this->last_time = time; if ( time == end_time ) break; // no more frames to run // take frame-specific actions this->frame_delay = this->frame_period; switch ( this->frame++ ) { case 0: if ( !(this->frame_mode & 0xC0) ) { this->next_irq = time + this->frame_period * 4 + 2; this->irq_flag = true; } // fall through case 2: // clock length and sweep on frames 0 and 2 Osc_clock_length( &this->square1.osc, 0x20 ); Osc_clock_length( &this->square2.osc, 0x20 ); Osc_clock_length( &this->noise.osc, 0x20 ); Osc_clock_length( &this->triangle.osc, 0x80 ); // different bit for halt flag on triangle Square_clock_sweep( &this->square1, -1 ); Square_clock_sweep( &this->square2, 0 ); // frame 2 is slightly shorter in mode 1 if ( this->dmc.pal_mode && this->frame == 3 ) this->frame_delay -= 2; break; case 1: // frame 1 is slightly shorter in mode 0 if ( !this->dmc.pal_mode ) this->frame_delay -= 2; break; case 3: this->frame = 0; // frame 3 is almost twice as long in mode 1 if ( this->frame_mode & 0x80 ) this->frame_delay += this->frame_period - (this->dmc.pal_mode ? 2 : 6); break; } // clock envelopes and linear counter every frame Triangle_clock_linear_counter( &this->triangle ); Square_clock_envelope( &this->square1 ); Square_clock_envelope( &this->square2 ); Noise_clock_envelope( &this->noise ); } } static inline void zero_apu_osc( struct Nes_Osc* osc, struct Blip_Synth* synth, nes_time_t time ) { struct Blip_Buffer* output = osc->output; int last_amp = osc->last_amp; osc->last_amp = 0; if ( output && last_amp ) Synth_offset( synth, time, -osc->last_amp, output ); } void Apu_end_frame( struct Nes_Apu* this, nes_time_t end_time ) { if ( end_time > this->last_time ) run_until_( this, end_time ); if ( this->dmc.nonlinear ) { zero_apu_osc( &this->square1.osc, this->square1.synth, this->last_time ); zero_apu_osc( &this->square2.osc, this->square2.synth, this->last_time ); zero_apu_osc( &this->triangle.osc, &this->triangle.synth, this->last_time ); zero_apu_osc( &this->noise.osc, &this->noise.synth, this->last_time ); zero_apu_osc( &this->dmc.osc, &this->dmc.synth, this->last_time ); } // make times relative to new frame this->last_time -= end_time; require( this->last_time >= 0 ); this->last_dmc_time -= end_time; require( this->last_dmc_time >= 0 ); if ( this->next_irq != apu_no_irq ) { this->next_irq -= end_time; check( this->next_irq >= 0 ); } if ( this->dmc.next_irq != apu_no_irq ) { this->dmc.next_irq -= end_time; check( this->dmc.next_irq >= 0 ); } if ( this->earliest_irq_ != apu_no_irq ) { this->earliest_irq_ -= end_time; if ( this->earliest_irq_ < 0 ) this->earliest_irq_ = 0; } } // registers static const unsigned char length_table [0x20] ICONST_ATTR = { 0x0A, 0xFE, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06, 0xA0, 0x08, 0x3C, 0x0A, 0x0E, 0x0C, 0x1A, 0x0E, 0x0C, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16, 0xC0, 0x18, 0x48, 0x1A, 0x10, 0x1C, 0x20, 0x1E }; void Apu_write_register( struct Nes_Apu* this, nes_time_t time, addr_t addr, int data ) { require( addr > 0x20 ); // addr must be actual address (i.e. 0x40xx) require( (unsigned) data <= 0xFF ); // Ignore addresses outside range if ( (unsigned) (addr - apu_io_addr) >= apu_io_size ) return; run_until_( this, time ); if ( addr < 0x4014 ) { // Write to channel int osc_index = (addr - apu_io_addr) >> 2; struct Nes_Osc* osc = this->oscs [osc_index]; int reg = addr & 3; osc->regs [reg] = data; osc->reg_written [reg] = true; if ( osc_index == 4 ) { // handle DMC specially Dmc_write_register( &this->dmc, reg, data ); } else if ( reg == 3 ) { // load length counter if ( (this->osc_enables >> osc_index) & 1 ) osc->length_counter = length_table [(data >> 3) & 0x1F]; // reset square phase if ( osc_index == 0 ) this->square1.phase = square_phase_range - 1; else if ( osc_index == 1 ) this->square2.phase = square_phase_range - 1; } } else if ( addr == 0x4015 ) { // Channel enables int i; for ( i = apu_osc_count; i--; ) if ( !((data >> i) & 1) ) this->oscs [i]->length_counter = 0; bool recalc_irq = this->dmc.irq_flag; this->dmc.irq_flag = false; int old_enables = this->osc_enables; this->osc_enables = data; if ( !(data & 0x10) ) { this->dmc.next_irq = apu_no_irq; recalc_irq = true; } else if ( !(old_enables & 0x10) ) { Dmc_start( &this->dmc ); // dmc just enabled } if ( recalc_irq ) Apu_irq_changed( this ); } else if ( addr == 0x4017 ) { // Frame mode this->frame_mode = data; bool irq_enabled = !(data & 0x40); this->irq_flag &= irq_enabled; this->next_irq = apu_no_irq; // mode 1 this->frame_delay = (this->frame_delay & 1); this->frame = 0; if ( !(data & 0x80) ) { // mode 0 this->frame = 1; this->frame_delay += this->frame_period; if ( irq_enabled ) this->next_irq = time + this->frame_delay + this->frame_period * 3 + 1; } Apu_irq_changed( this ); } } int Apu_read_status( struct Nes_Apu* this, nes_time_t time ) { run_until_( this, time - 1 ); int result = (this->dmc.irq_flag << 7) | (this->irq_flag << 6); int i; for ( i = 0; i < apu_osc_count; i++ ) if ( this->oscs [i]->length_counter ) result |= 1 << i; run_until_( this, time ); if ( this->irq_flag ) { result |= 0x40; this->irq_flag = false; Apu_irq_changed( this ); } //debug_printf( "%6d/%d Read $4015->$%02X\n", frame_delay, frame, result ); return result; }