/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * Copyright © 2008 Rafaël Carré * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */ #include "config.h" /* for HAVE_MULTIVOLUME */ #include "fat.h" #include "thread.h" #include "hotswap.h" #include "system.h" #include "cpu.h" #include #include "as3525.h" #include "pl180.h" #include "panic.h" #include "stdbool.h" #include "ata_idle_notify.h" #include "sd.h" #ifdef HAVE_HOTSWAP #include "disk.h" #endif /* command flags */ #define MMC_NO_FLAGS (0<<0) #define MMC_RESP (1<<0) #define MMC_LONG_RESP (1<<1) #define MMC_ARG (1<<2) /* ARM PL180 registers */ #define MMC_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00)) #define MMC_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04)) #define MMC_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08)) #define MMC_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C)) #define MMC_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10)) #define MMC_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14)) #define MMC_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18)) #define MMC_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C)) #define MMC_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20)) #define MMC_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24)) #define MMC_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28)) #define MMC_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C)) #define MMC_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30)) #define MMC_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34)) #define MMC_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38)) #define MMC_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C)) #define MMC_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40)) #define MMC_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44)) #define MMC_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48)) #define MMC_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80)) /* volumes */ #define NAND_AS3525 0 #define SD_AS3525 1 static const int pl180_base[NUM_VOLUMES] = { NAND_FLASH_BASE #ifdef HAVE_MULTIVOLUME , SD_MCI_BASE #endif }; #define BLOCK_SIZE 512 #define SECTOR_SIZE 512 static tSDCardInfo card_info[NUM_VOLUMES]; /* for compatibility */ static long last_disk_activity = -1; #define MIN_YIELD_PERIOD 1000 static long next_yield = 0; /* Shoot for around 75% usage */ static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)]; static const char sd_thread_name[] = "ata/sd"; static struct mutex sd_mtx SHAREDBSS_ATTR; static struct event_queue sd_queue; static inline void mci_delay(void) { int i = 0xffff; while(i--) ; } static void mci_set_clock_divider(const int drive, int divider) { int clock = MMC_CLOCK(drive); if(divider > 1) { /* use divide logic */ clock &= ~MCI_CLOCK_BYPASS; /* convert divider to MMC_CLOCK logic */ divider = (divider/2) - 1; if(divider >= 256) divider = 255; } else { /* bypass dividing logic */ clock |= MCI_CLOCK_BYPASS; divider = 0; } MMC_CLOCK(drive) = clock | divider; mci_delay(); } static bool send_cmd(const int drive, const int cmd, const int arg, const int flags, int *response) { int val, status; while(MMC_STATUS(drive) & MCI_CMD_ACTIVE); if(MMC_COMMAND(drive) & MCI_COMMAND_ENABLE) /* clears existing command */ { MMC_COMMAND(drive) = 0; mci_delay(); } val = cmd | MCI_COMMAND_ENABLE; if(flags & MMC_RESP) { val |= MCI_COMMAND_RESPONSE; if(flags & MMC_LONG_RESP) val |= MCI_COMMAND_LONG_RESPONSE; } MMC_CLEAR(drive) = 0x7ff; MMC_ARGUMENT(drive) = (flags & MMC_ARG) ? arg : 0; MMC_COMMAND(drive) = val; while(MMC_STATUS(drive) & MCI_CMD_ACTIVE); /* wait for cmd completion */ MMC_COMMAND(drive) = 0; MMC_ARGUMENT(drive) = ~0; status = MMC_STATUS(drive); MMC_CLEAR(drive) = 0x7ff; if(flags & MMC_RESP) { if(status & MCI_CMD_TIMEOUT) return false; else if(status & (MCI_CMD_CRC_FAIL /* FIXME? */ | MCI_CMD_RESP_END)) { /* resp received */ if(flags & MMC_LONG_RESP) { /* store the response in little endian order for the words */ response[0] = MMC_RESP3(drive); response[1] = MMC_RESP2(drive); response[2] = MMC_RESP1(drive); response[3] = MMC_RESP0(drive); } else response[0] = MMC_RESP0(drive); return true; } } else if(status & MCI_CMD_SENT) return true; return false; } static int sd_init_card(const int drive) { unsigned int c_size; unsigned long c_mult; int response; int max_tries = 100; /* max acmd41 attemps */ bool sdhc; if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MMC_NO_FLAGS, NULL)) return -1; mci_delay(); sdhc = false; if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MMC_RESP|MMC_ARG, &response)) if((response & 0xFFF) == 0x1AA) sdhc = true; do { mci_delay(); /* app_cmd */ if( !send_cmd(drive, SD_APP_CMD, 0, MMC_RESP|MMC_ARG, &response) || !(response & (1<<5)) ) { return -2; } /* acmd41 */ if(!send_cmd(drive, SD_APP_OP_COND, (sdhc ? 0x40FF8000 : (1<<23)), MMC_RESP|MMC_ARG, &card_info[drive].ocr)) return -3; } while(!(card_info[drive].ocr & (1<<31)) && max_tries--); if(!max_tries) return -4; /* send CID */ if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MMC_RESP|MMC_LONG_RESP|MMC_ARG, card_info[drive].cid)) return -5; /* send RCA */ if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MMC_RESP|MMC_ARG, &card_info[drive].rca)) return -6; /* send CSD */ if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca, MMC_RESP|MMC_LONG_RESP|MMC_ARG, card_info[drive].csd)) return -7; /* These calculations come from the Sandisk SD card product manual */ if( (card_info[drive].csd[3]>>30) == 0) { /* CSD version 1.0 */ c_size = ((card_info[drive].csd[2] & 0x3ff) << 2) + (card_info[drive].csd[1]>>30) + 1; c_mult = 4 << ((card_info[drive].csd[1] >> 15) & 7); card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 15); card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ card_info[drive].numblocks = c_size * c_mult * (card_info[drive].max_read_bl_len/512); card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size; } #ifdef HAVE_MULTIVOLUME else if( (card_info[drive].csd[3]>>30) == 1) { /* CSD version 2.0 */ c_size = ((card_info[drive].csd[2] & 0x3f) << 16) + (card_info[drive].csd[1]>>16) + 1; card_info[drive].max_read_bl_len = 1 << ((card_info[drive].csd[2] >> 16) & 0xf); card_info[drive].block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ card_info[drive].numblocks = c_size << 10; card_info[drive].capacity = card_info[drive].numblocks * card_info[drive].block_size; } #endif if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MMC_ARG, NULL)) return -9; if(!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MMC_ARG, NULL)) return -10; if(!send_cmd(drive, SD_SET_BUS_WIDTH, card_info[drive].rca | 2, MMC_ARG, NULL)) return -11; if(!send_cmd(drive, SD_SET_BLOCKLEN, card_info[drive].block_size, MMC_ARG, NULL)) return -12; card_info[drive].initialized = 1; mci_set_clock_divider(drive, 1); /* full speed */ return 0; } static void sd_thread(void) __attribute__((noreturn)); static void sd_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch ( ev.id ) { #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: fat_lock(); /* lock-out FAT activity first - prevent deadlocking via disk_mount that would cause a reverse-order attempt with another thread */ mutex_lock(&sd_mtx); /* lock-out card activity - direct calls into driver that bypass the fat cache */ /* We now have exclusive control of fat cache and ata */ disk_unmount(1); /* release "by force", ensure file descriptors aren't leaked and any busy ones are invalid if mounting */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[1].initialized = 0; if (ev.id == SYS_HOTSWAP_INSERTED) disk_mount(1); queue_broadcast(SYS_FS_CHANGED, 0); /* Access is now safe */ mutex_unlock(&sd_mtx); fat_unlock(); break; #endif case SYS_TIMEOUT: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { /* never let a timer wrap confuse us */ next_yield = current_tick; if (!idle_notified) { call_storage_idle_notifys(false); idle_notified = true; } } break; #if 0 case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; case SYS_USB_DISCONNECTED: usb_acknowledge(SYS_USB_DISCONNECTED_ACK); break; #endif } } } static void init_pl180_controller(const int drive) { #ifdef BOOTLOADER MMC_COMMAND(drive) = MMC_DATA_CTRL(drive) = 0; MMC_CLEAR(drive) = 0x7ff; MMC_MASK0(drive) = MMC_MASK1(drive) = 0; /* disable all interrupts */ MMC_POWER(drive) = MCI_POWER_UP|(10 /*voltage*/ << 2); /* use OF voltage */ mci_delay(); MMC_POWER(drive) |= MCI_POWER_ON; mci_delay(); MMC_SELECT(drive) = 0; MMC_CLOCK(drive) = MCI_CLOCK_ENABLE; MMC_CLOCK(drive) &= ~MCI_CLOCK_POWERSAVE; #endif /* BOOTLOADER */ /* set MCLK divider */ mci_set_clock_divider(drive, 200); } int sd_init(void) { int ret; #ifdef BOOTLOADER /* No need to do twice the same thing */ CGU_IDE = (1<<7) /* AHB interface enable */ | (1<<6) /* interface enable */ | (2<<2) /* clock didiver = 2+1 */ | 1 /* clock source = PLLA */; CGU_PERI |= CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI |= CGU_MCI_CLOCK_ENABLE; #endif CCU_IO &= ~8; /* bits 3:2 = 01, xpd is SD interface */ CCU_IO |= 4; #endif init_pl180_controller(NAND_AS3525); ret = sd_init_card(NAND_AS3525); if(ret < 0) return ret; #ifdef HAVE_MULTIVOLUME init_pl180_controller(SD_AS3525); ret = sd_init_card(SD_AS3525); if(ret < 0) return ret; #endif queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); return 0; } #ifdef STORAGE_GET_INFO void sd_get_info(IF_MV2(int drive,) struct storage_info *info) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif info->sector_size=card_info[drive].block_size; info->num_sectors=card_info[drive].numblocks; info->vendor="Rockbox"; info->product = (drive == 0) ? "Internal Storage" : "SD Card Slot"; info->revision="0.00"; } #endif #ifdef HAVE_HOTSWAP bool sd_removable(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (drive==1); } bool sd_present(IF_MV_NONVOID(int drive)) { #ifndef HAVE_MULTIVOLUME const int drive=0; #endif return (card_info[drive].initialized && card_info[drive].numblocks > 0); } #endif int sd_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf) { (void)start; (void)count; (void)buf; return 0; /* TODO */ } static bool sd_poll_status(const int drive, unsigned int trigger, long timeout) { long t = current_tick; while ((MMC_STATUS(drive) & trigger) == 0) { long time = current_tick; if (TIME_AFTER(time, next_yield)) { long ty = current_tick; yield(); timeout += current_tick - ty; next_yield = ty + MIN_YIELD_PERIOD; } if (TIME_AFTER(time, t + timeout)) return false; } return true; } static int sd_wait_for_state(const int drive, unsigned int state) { unsigned int response = 0; unsigned int timeout = 0x80000; long t = current_tick; while (1) { long us; if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MMC_RESP|MMC_ARG, &response)) return -1; if (((response >> 9) & 0xf) == state) return 0; if(TIME_AFTER(current_tick, t + timeout)) return -1; us = current_tick; if (TIME_AFTER(us, next_yield)) { yield(); timeout += current_tick - us; next_yield = us + MIN_YIELD_PERIOD; } } } int sd_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { #ifndef HAVE_MULTIVOLUME const int drive = 0; #endif int ret; unsigned char *buf_end, *buf = inbuf; int remaining = incount; const unsigned long *fifo_base = MMC_FIFO(drive); start += 20480; /* skip SanDisk OF */ /* TODO: Add DMA support. */ mutex_lock(&sd_mtx); #ifdef HAVE_MULTIVOLUME if (drive != 0 && !card_detect_target()) { /* no external sd-card inserted */ ret = -88; goto sd_read_error; } #endif if (card_info[drive].initialized < 0) { ret = card_info[drive].initialized; goto sd_read_error; } last_disk_activity = current_tick; ret = sd_wait_for_state(drive, SD_TRAN); if (ret < 0) goto sd_read_error; while(remaining) { /* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH * register, so we have to transfer maximum 127 sectors at a time. */ int transfer = (remaining >= 128) ? 127 : remaining; /* sectors */ if(card_info[drive].ocr & (1<<30) ) /* SDHC */ ret = send_cmd(drive, SD_READ_MULTIPLE_BLOCK, start, MMC_ARG, NULL); else ret = send_cmd(drive, SD_READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, MMC_ARG, NULL); if (ret < 0) goto sd_read_error; /* TODO: Don't assume BLOCK_SIZE == SECTOR_SIZE */ MMC_DATA_TIMER(drive) = 0x1000000; /* FIXME: arbitrary */ MMC_DATA_LENGTH(drive) = transfer * card_info[drive].block_size; MMC_DATA_CTRL(drive) = (1<<0) /* enable */ | (1<<1) /* from card to controller */ | (9<<4) /* 2^9 = 512 */ ; buf_end = buf + transfer * card_info[drive].block_size; while(buf < buf_end) { /* Wait for the FIFO to be half full */ if (!sd_poll_status(drive, ((1<<15)), 100)) { ret = -42; goto sd_read_error; } asm volatile( "ldmia %2, {r0-r7} \n" /* load 8 * 4 bytes */ "stmia %1!, {r0-r7} \n" /* store 8 * 4 bytes */ :"=r"(buf) /* output */ :"r"(buf), "r"(fifo_base) /* input */ :"r0","r1","r2","r3","r4","r5","r6","r7","r8" /* clobbers */ ); } remaining -= transfer; start += transfer; last_disk_activity = current_tick; if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MMC_NO_FLAGS, NULL)) { ret = -666; goto sd_read_error; } ret = sd_wait_for_state(drive, SD_TRAN); if (ret < 0) goto sd_read_error; } while (1) { mutex_unlock(&sd_mtx); return ret; sd_read_error: card_info[drive].initialized = 0; } } #ifndef BOOTLOADER void sd_sleep(void) { } void sd_spin(void) { } void sd_spindown(int seconds) { (void)seconds; } long sd_last_disk_activity(void) { return last_disk_activity; } void sd_enable(bool on) { if(on) { CGU_PERI |= CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI |= CGU_MCI_CLOCK_ENABLE; #endif CGU_IDE |= (1<<7) /* AHB interface enable */ | (1<<6) /* interface enable */; } else { CGU_PERI &= ~CGU_NAF_CLOCK_ENABLE; #ifdef HAVE_MULTIVOLUME CGU_PERI &= ~CGU_MCI_CLOCK_ENABLE; #endif CGU_IDE &= ~((1<<7)|(1<<6)); } } /* move the sd-card info to mmc struct */ tCardInfo *card_get_info_target(int card_no) { int i, temp; static tCardInfo card; static const char mantissa[] = { /* *10 */ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int exponent[] = { /* use varies */ 1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 }; card.initialized = card_info[card_no].initialized; card.ocr = card_info[card_no].ocr; for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[i]; for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[i]; card.numblocks = card_info[card_no].numblocks; card.blocksize = card_info[card_no].block_size; temp = card_extract_bits(card.csd, 29, 3); card.speed = mantissa[card_extract_bits(card.csd, 25, 4)] * exponent[temp > 2 ? 7 : temp + 4]; card.nsac = 100 * card_extract_bits(card.csd, 16, 8); temp = card_extract_bits(card.csd, 13, 3); card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)] * exponent[temp] / 10; card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */ card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */ temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */ *((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3; return &card; } #endif /* BOOTLOADER */