/* * Atrac 3 compatible decoder * Copyright (c) 2006-2008 Maxim Poliakovski * Copyright (c) 2006-2008 Benjamin Larsson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/atrac3.c * Atrac 3 compatible decoder. * This decoder handles Sony's ATRAC3 data. * * Container formats used to store atrac 3 data: * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3). * * To use this decoder, a calling application must supply the extradata * bytes provided in the containers above. */ #include #include #include #include "atrac3.h" #include "atrac3data.h" #include "atrac3data_fixed.h" #include "fixp_math.h" #define JOINT_STEREO 0x12 #define STEREO 0x2 #ifdef ROCKBOX #undef DEBUGF #define DEBUGF(...) #endif /* ROCKBOX */ /* FFMAX/MIN/SWAP and av_clip were taken from libavutil/common.h */ #define FFMAX(a,b) ((a) > (b) ? (a) : (b)) #define FFMIN(a,b) ((a) > (b) ? (b) : (a)) #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0) static VLC spectral_coeff_tab[7]; static int32_t qmf_window[48] IBSS_ATTR; static int32_t atrac3_spectrum [2][1024] IBSS_ATTR __attribute__((aligned(16))); static int32_t atrac3_IMDCT_buf[2][ 512] IBSS_ATTR __attribute__((aligned(16))); static int32_t atrac3_prevFrame[2][1024] IBSS_ATTR; static channel_unit channel_units[2] IBSS_ATTR_LARGE_IRAM; /** * Matrixing within quadrature mirror synthesis filter. * * @param p3 output buffer * @param inlo lower part of spectrum * @param inhi higher part of spectrum * @param nIn size of spectrum buffer */ #if defined(CPU_ARM) extern void atrac3_iqmf_matrixing(int32_t *p3, int32_t *inlo, int32_t *inhi, unsigned int nIn); #else static inline void atrac3_iqmf_matrixing(int32_t *p3, int32_t *inlo, int32_t *inhi, unsigned int nIn) { uint32_t i; for(i=0; i> (off*8)) | (0x537F6103 << (32-(off*8)))); bytes += 3 + off; for (i = 0; i < bytes/4; i++) obuf[i] = c ^ buf[i]; return off; } static void init_atrac3_transforms(void) { int32_t s; int i; /* Generate the mdct window, for details see * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */ /* mdct window had been generated and saved as a lookup table in atrac3data_fixed.h */ /* Generate the QMF window. */ for (i=0 ; i<24; i++) { s = qmf_48tap_half_fix[i] << 1; qmf_window[i] = s; qmf_window[47 - i] = s; } } /** * Mantissa decoding * * @param gb the GetBit context * @param selector what table is the output values coded with * @param codingFlag constant length coding or variable length coding * @param mantissas mantissa output table * @param numCodes amount of values to get */ static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes) { int numBits, cnt, code, huffSymb; if (selector == 1) numCodes /= 2; if (codingFlag != 0) { /* constant length coding (CLC) */ numBits = CLCLengthTab[selector]; if (selector > 1) { for (cnt = 0; cnt < numCodes; cnt++) { if (numBits) code = get_sbits(gb, numBits); else code = 0; mantissas[cnt] = code; } } else { for (cnt = 0; cnt < numCodes; cnt++) { if (numBits) code = get_bits(gb, numBits); /* numBits is always 4 in this case */ else code = 0; mantissas[cnt*2] = seTab_0[code >> 2]; mantissas[cnt*2+1] = seTab_0[code & 3]; } } } else { /* variable length coding (VLC) */ if (selector != 1) { for (cnt = 0; cnt < numCodes; cnt++) { huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); huffSymb += 1; code = huffSymb >> 1; if (huffSymb & 1) code = -code; mantissas[cnt] = code; } } else { for (cnt = 0; cnt < numCodes; cnt++) { huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3); mantissas[cnt*2] = decTable1[huffSymb*2]; mantissas[cnt*2+1] = decTable1[huffSymb*2+1]; } } } } /** * Requantize the spectrum. * * @param *mantissas pointer to mantissas for each spectral line * @param pOut requantized band spectrum * @param first first spectral line in subband * @param last last spectral line in subband * @param SF scalefactor for all spectral lines of this band */ static void inverseQuantizeSpectrum(int *mantissas, int32_t *pOut, int32_t first, int32_t last, int32_t SF) { int *pIn = mantissas; /* Inverse quantize the coefficients. */ if((first/256) &1) { /* Odd band - Reverse coefficients */ do { pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); pOut[last--] = fixmul16(*pIn++, SF); } while (last>first); } else { /* Even band - Do not reverse coefficients */ do { pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); pOut[first++] = fixmul16(*pIn++, SF); } while (first> 2] == 0) continue; coded_components = get_bits(gb,3); for (k=0; kgBlock; for (i=0 ; i<=numBands; i++) { numData = get_bits(gb,3); pGain[i].num_gain_data = numData; pLevel = pGain[i].levcode; pLoc = pGain[i].loccode; for (cf = 0; cf < numData; cf++){ pLevel[cf]= get_bits(gb,4); pLoc [cf]= get_bits(gb,5); if(cf && pLoc[cf] <= pLoc[cf-1]) return -1; } } /* Clear the unused blocks. */ for (; i<4 ; i++) pGain[i].num_gain_data = 0; return 0; } /** * Apply fix (constant) gain and overlap for sample[start...255]. * * @param pIn input buffer * @param pPrev previous buffer to perform overlap against * @param pOut output buffer * @param start index to start with (always a multiple of 8) * @param gain gain to apply */ static void applyFixGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut, int32_t start, int32_t gain) { int32_t i = start; /* start is always a multiple of 8 and therefore allows us to unroll the * loop to 8 calculation per loop */ if (ONE_16 == gain) { /* gain1 = 1.0 -> no multiplication needed, just adding */ /* Remark: This path is called >90%. */ do { pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; pOut[i] = pIn[i] + pPrev[i]; i++; } while (i<256); } else { /* gain1 != 1.0 -> we need to do a multiplication */ /* Remark: This path is called seldom. */ do { pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++; } while (i<256); } } /** * Apply variable gain and overlap. Returns sample index after applying gain, * resulting sample index is always a multiple of 8. * * @param pIn input buffer * @param pPrev previous buffer to perform overlap against * @param pOut output buffer * @param start index to start with (always a multiple of 8) * @param end end index for first loop (always a multiple of 8) * @param gain1 current bands gain to apply * @param gain2 next bands gain to apply * @param gain_inc stepwise adaption from gain1 to gain2 */ static int applyVariableGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut, int32_t start, int32_t end, int32_t gain1, int32_t gain2, int32_t gain_inc) { int32_t i = start; /* Apply fix gains until end index is reached */ do { pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; } while (i < end); /* Interpolation is done over next eight samples */ pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++; gain2 = fixmul16(gain2, gain_inc); return i; } /** * Apply gain parameters and perform the MDCT overlapping part * * @param pIn input buffer * @param pPrev previous buffer to perform overlap against * @param pOut output buffer * @param pGain1 current band gain info * @param pGain2 next band gain info */ static void gainCompensateAndOverlap (int32_t *pIn, int32_t *pPrev, int32_t *pOut, gain_info *pGain1, gain_info *pGain2) { /* gain compensation function */ int32_t gain1, gain2, gain_inc; int cnt, numdata, nsample, startLoc; if (pGain2->num_gain_data == 0) gain1 = ONE_16; else gain1 = (ONE_16<<4)>>(pGain2->levcode[0]); if (pGain1->num_gain_data == 0) { /* Remark: This path is called >90%. */ /* Apply gain for all samples from 0...255 */ applyFixGain(pIn, pPrev, pOut, 0, gain1); } else { /* Remark: This path is called seldom. */ numdata = pGain1->num_gain_data; pGain1->loccode[numdata] = 32; pGain1->levcode[numdata] = 4; nsample = 0; /* starting loop with =0 */ for (cnt = 0; cnt < numdata; cnt++) { startLoc = pGain1->loccode[cnt] * 8; gain2 = (ONE_16<<4)>>(pGain1->levcode[cnt]); gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15]; /* Apply variable gain (gain1 -> gain2) to samples */ nsample = applyVariableGain(pIn, pPrev, pOut, nsample, startLoc, gain1, gain2, gain_inc); } /* Apply gain for the residual samples from nsample...255 */ applyFixGain(pIn, pPrev, pOut, nsample, gain1); } /* Delay for the overlapping part. */ memcpy(pPrev, &pIn[256], 256*sizeof(int32_t)); } /** * Combine the tonal band spectrum and regular band spectrum * Return position of the last tonal coefficient * * @param pSpectrum output spectrum buffer * @param numComponents amount of tonal components * @param pComponent tonal components for this band */ static int addTonalComponents (int32_t *pSpectrum, int numComponents, tonal_component *pComponent) { int cnt, i, lastPos = -1; int32_t *pOut; int32_t *pIn; for (cnt = 0; cnt < numComponents; cnt++){ lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos); pIn = pComponent[cnt].coef; pOut = &(pSpectrum[pComponent[cnt].pos]); for (i=0 ; i>3), (((y) - (x))))) */ #define INTERPOLATE_FP16(x, y, s) ((x) + ((s*((y)-(x)))>>3)) static void reverseMatrixing(int32_t *su1, int32_t *su2, int *pPrevCode, int *pCurrCode) { int i, band, nsample, s1, s2; int32_t c1, c2; int32_t mc1_l, mc1_r, mc2_l, mc2_r; for (i=0,band = 0; band < 4*256; band+=256,i++) { s1 = pPrevCode[i]; s2 = pCurrCode[i]; nsample = 0; if (s1 != s2) { /* Selector value changed, interpolation needed. */ mc1_l = matrixCoeffs_fix[s1<<1]; mc1_r = matrixCoeffs_fix[(s1<<1)+1]; mc2_l = matrixCoeffs_fix[s2<<1]; mc2_r = matrixCoeffs_fix[(s2<<1)+1]; /* Interpolation is done over the first eight samples. */ for(; nsample < 8; nsample++) { c1 = su1[band+nsample]; c2 = su2[band+nsample]; c2 = fixmul16(c1, INTERPOLATE_FP16(mc1_l, mc2_l, nsample)) + fixmul16(c2, INTERPOLATE_FP16(mc1_r, mc2_r, nsample)); su1[band+nsample] = c2; su2[band+nsample] = (c1 << 1) - c2; } } /* Apply the matrix without interpolation. */ switch (s2) { case 0: /* M/S decoding */ for (; nsample < 256; nsample++) { c1 = su1[band+nsample]; c2 = su2[band+nsample]; su1[band+nsample] = c2 << 1; su2[band+nsample] = (c1 - c2) << 1; } break; case 1: for (; nsample < 256; nsample++) { c1 = su1[band+nsample]; c2 = su2[band+nsample]; su1[band+nsample] = (c1 + c2) << 1; su2[band+nsample] = -1*(c2 << 1); } break; case 2: case 3: for (; nsample < 256; nsample++) { c1 = su1[band+nsample]; c2 = su2[band+nsample]; su1[band+nsample] = c1 + c2; su2[band+nsample] = c1 - c2; } break; default: /* assert(0) */; break; } } } static void getChannelWeights (int indx, int flag, int32_t ch[2]){ /* Read channel weights from table */ if (flag) { /* Swap channel weights */ ch[1] = channelWeights0[indx&7]; ch[0] = channelWeights1[indx&7]; } else { ch[0] = channelWeights0[indx&7]; ch[1] = channelWeights1[indx&7]; } } static void channelWeighting (int32_t *su1, int32_t *su2, int *p3) { int band, nsample; /* w[x][y] y=0 is left y=1 is right */ int32_t w[2][2]; if (p3[1] != 7 || p3[3] != 7){ getChannelWeights(p3[1], p3[0], w[0]); getChannelWeights(p3[3], p3[2], w[1]); for(band = 1; band < 4; band++) { /* scale the channels by the weights */ for(nsample = 0; nsample < 8; nsample++) { su1[band*256+nsample] = fixmul16(su1[band*256+nsample], INTERPOLATE_FP16(w[0][0], w[0][1], nsample)); su2[band*256+nsample] = fixmul16(su2[band*256+nsample], INTERPOLATE_FP16(w[1][0], w[1][1], nsample)); } for(; nsample < 256; nsample++) { su1[band*256+nsample] = fixmul16(su1[band*256+nsample], w[1][0]); su2[band*256+nsample] = fixmul16(su2[band*256+nsample], w[1][1]); } } } } /** * Decode a Sound Unit * * @param gb the GetBit context * @param pSnd the channel unit to be used * @param pOut the decoded samples before IQMF * @param channelNum channel number * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono) */ static int decodeChannelSoundUnit (GetBitContext *gb, channel_unit *pSnd, int32_t *pOut, int channelNum, int codingMode) { int band, result=0, numSubbands, lastTonal, numBands; if (codingMode == JOINT_STEREO && channelNum == 1) { if (get_bits(gb,2) != 3) { DEBUGF("JS mono Sound Unit id != 3.\n"); return -1; } } else { if (get_bits(gb,6) != 0x28) { DEBUGF("Sound Unit id != 0x28.\n"); return -1; } } /* number of coded QMF bands */ pSnd->bandsCoded = get_bits(gb,2); result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded); if (result) return result; pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded); if (pSnd->numComponents == -1) return -1; numSubbands = decodeSpectrum (gb, pSnd->spectrum); /* Merge the decoded spectrum and tonal components. */ lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components); /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */ numBands = (subbandTab[numSubbands] - 1) >> 8; if (lastTonal >= 0) numBands = FFMAX((lastTonal + 256) >> 8, numBands); /* Reconstruct time domain samples. */ for (band=0; band<4; band++) { /* Perform the IMDCT step without overlapping. */ if (band <= numBands) { IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf); } else { memset(pSnd->IMDCT_buf, 0, 512 * sizeof(int32_t)); } /* gain compensation and overlapping */ gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]), &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]), &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band])); } /* Swap the gain control buffers for the next frame. */ pSnd->gcBlkSwitch ^= 1; return 0; } /** * Frame handling * * @param q Atrac3 private context * @param databuf the input data */ static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, int off) { int result, i; int32_t *p1, *p2, *p3, *p4; uint8_t *ptr1; if (q->codingMode == JOINT_STEREO) { /* channel coupling mode */ /* decode Sound Unit 1 */ init_get_bits(&q->gb,databuf,q->bits_per_frame); result = decodeChannelSoundUnit(&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO); if (result != 0) return (result); /* Framedata of the su2 in the joint-stereo mode is encoded in * reverse byte order so we need to swap it first. */ if (databuf == q->decoded_bytes_buffer) { uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1; ptr1 = q->decoded_bytes_buffer; for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) { FFSWAP(uint8_t,*ptr1,*ptr2); } } else { const uint8_t *ptr2 = databuf+q->bytes_per_frame-1; for (i = 0; i < q->bytes_per_frame; i++) q->decoded_bytes_buffer[i] = *ptr2--; } /* Skip the sync codes (0xF8). */ ptr1 = q->decoded_bytes_buffer; for (i = 4; *ptr1 == 0xF8; i++, ptr1++) { if (i >= q->bytes_per_frame) return -1; } /* set the bitstream reader at the start of the second Sound Unit*/ init_get_bits(&q->gb,ptr1,q->bits_per_frame); /* Fill the Weighting coeffs delay buffer */ memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int)); q->weighting_delay[4] = get_bits1(&q->gb); q->weighting_delay[5] = get_bits(&q->gb,3); for (i = 0; i < 4; i++) { q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i]; q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i]; q->matrix_coeff_index_next[i] = get_bits(&q->gb,2); } /* Decode Sound Unit 2. */ result = decodeChannelSoundUnit(&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO); if (result != 0) return (result); /* Reconstruct the channel coefficients. */ reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now); channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay); } else { /* normal stereo mode or mono */ /* Decode the channel sound units. */ for (i=0 ; ichannels ; i++) { /* Set the bitstream reader at the start of a channel sound unit. */ init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels)+off, (q->bits_per_frame)/q->channels); result = decodeChannelSoundUnit(&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode); if (result != 0) return (result); } } /* Apply the iQMF synthesis filter. */ p1= q->outSamples; for (i=0 ; ichannels ; i++) { p2= p1+256; p3= p2+256; p4= p3+256; iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf); iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf); iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf); p1 +=1024; } return 0; } /** * Atrac frame decoding * * @param rmctx pointer to the AVCodecContext */ int atrac3_decode_frame(unsigned long block_align, ATRAC3Context *q, int *data_size, const uint8_t *buf, int buf_size) { int result = 0, off = 0; const uint8_t* databuf; if ((unsigned)buf_size < block_align) return buf_size; /* Check if we need to descramble and what buffer to pass on. */ if (q->scrambled_stream) { off = decode_bytes(buf, q->decoded_bytes_buffer, block_align); databuf = q->decoded_bytes_buffer; } else { databuf = buf; } result = decodeFrame(q, databuf, off); if (result != 0) { DEBUGF("Frame decoding error!\n"); return -1; } if (q->channels == 1) *data_size = 1024 * sizeof(int32_t); else *data_size = 2048 * sizeof(int32_t); return block_align; } /** * Atrac3 initialization * * @param rmctx pointer to the RMContext */ int atrac3_decode_init(ATRAC3Context *q, struct mp3entry *id3) { int i; uint8_t *edata_ptr = (uint8_t*)&id3->id3v2buf; static VLC_TYPE atrac3_vlc_table[4096][2]; static int vlcs_initialized = 0; /* Take data from the RM container. */ q->sample_rate = id3->frequency; q->channels = id3->channels; q->bit_rate = id3->bitrate * 1000; q->bits_per_frame = id3->bytesperframe * 8; q->bytes_per_frame = id3->bytesperframe; /* Take care of the codec-specific extradata. */ if (id3->extradata_size == 14) { /* Parse the extradata, WAV format */ DEBUGF("[0-1] %d\n",rm_get_uint16le(&edata_ptr[0])); /* Unknown value always 1 */ q->samples_per_channel = rm_get_uint32le(&edata_ptr[2]); q->codingMode = rm_get_uint16le(&edata_ptr[6]); DEBUGF("[8-9] %d\n",rm_get_uint16le(&edata_ptr[8])); /* Dupe of coding mode */ q->frame_factor = rm_get_uint16le(&edata_ptr[10]); /* Unknown always 1 */ DEBUGF("[12-13] %d\n",rm_get_uint16le(&edata_ptr[12])); /* Unknown always 0 */ /* setup */ q->samples_per_frame = 1024 * q->channels; q->atrac3version = 4; q->delay = 0x88E; if (q->codingMode) q->codingMode = JOINT_STEREO; else q->codingMode = STEREO; q->scrambled_stream = 0; if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) { } else { DEBUGF("Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor); return -1; } } else if (id3->extradata_size == 10) { /* Parse the extradata, RM format. */ q->atrac3version = rm_get_uint32be(&edata_ptr[0]); q->samples_per_frame = rm_get_uint16be(&edata_ptr[4]); q->delay = rm_get_uint16be(&edata_ptr[6]); q->codingMode = rm_get_uint16be(&edata_ptr[8]); q->samples_per_channel = q->samples_per_frame / q->channels; q->scrambled_stream = 1; } else { DEBUGF("Unknown extradata size %d.\n",id3->extradata_size); } /* Check the extradata. */ if (q->atrac3version != 4) { DEBUGF("Version %d != 4.\n",q->atrac3version); return -1; } if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) { DEBUGF("Unknown amount of samples per frame %d.\n",q->samples_per_frame); return -1; } if (q->delay != 0x88E) { DEBUGF("Unknown amount of delay %x != 0x88E.\n",q->delay); return -1; } if (q->codingMode == STEREO) { DEBUGF("Normal stereo detected.\n"); } else if (q->codingMode == JOINT_STEREO) { DEBUGF("Joint stereo detected.\n"); } else { DEBUGF("Unknown channel coding mode %x!\n",q->codingMode); return -1; } if (id3->channels <= 0 || id3->channels > 2 ) { DEBUGF("Channel configuration error!\n"); return -1; } if(id3->bytesperframe >= UINT16_MAX/2) return -1; /* Initialize the VLC tables. */ if (!vlcs_initialized) { for (i=0 ; i<7 ; i++) { spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]]; spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i]; init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i], huff_bits[i], 1, 1, huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); } vlcs_initialized = 1; } init_atrac3_transforms(); /* init the joint-stereo decoding data */ q->weighting_delay[0] = 0; q->weighting_delay[1] = 7; q->weighting_delay[2] = 0; q->weighting_delay[3] = 7; q->weighting_delay[4] = 0; q->weighting_delay[5] = 7; for (i=0; i<4; i++) { q->matrix_coeff_index_prev[i] = 3; q->matrix_coeff_index_now[i] = 3; q->matrix_coeff_index_next[i] = 3; } /* Link the iram'ed arrays to the decoder's data structure */ q->pUnits = channel_units; q->pUnits[0].spectrum = &atrac3_spectrum [0][0]; q->pUnits[1].spectrum = &atrac3_spectrum [1][0]; q->pUnits[0].IMDCT_buf = &atrac3_IMDCT_buf[0][0]; q->pUnits[1].IMDCT_buf = &atrac3_IMDCT_buf[1][0]; q->pUnits[0].prevFrame = &atrac3_prevFrame[0][0]; q->pUnits[1].prevFrame = &atrac3_prevFrame[1][0]; return 0; }