/* sudoku.c - sudoku game * * Writing a fun Su-Do-Ku game has turned out to be a difficult exercise. * The biggest difficulty is keeping the game fun - and this means allowing * the user to make mistakes. The game is not much fun if it prevents the * user from making moves, or if it informs them of an incorrect move. * With movement constraints, the 'game' is little more than an automated * solver (and no fun at all). * * Another challenge is generating good puzzles that are entertaining to * solve. It is certainly true that there is an art to creating good * Su-Do-Ku puzzles, and that good hand generated puzzles are more * entertaining than many computer generated puzzles - I just hope that * the algorithm implemented here provides fun puzzles. It is an area * that needs work. The puzzle classification is very simple, and could * also do with work. Finally, understanding the automatically generated * hints is sometimes more work than solving the puzzle - a better, and * more human friendly, mechanism is needed. * * Comments, suggestions, and contributions are always welcome - send email * to: mike 'at' laurasia.com.au. Note that this code assumes a single * threaded process, makes extensive use of global variables, and has * not been written to be reused in other applications. The code makes no * use of dynamic memory allocation, and hence, requires no heap. It should * also run with minimal stack space. * * This code and accompanying files have been placed into the public domain * by Michael Kennett, July 2005. It is provided without any warranty * whatsoever, and in no event shall Michael Kennett be liable for * any damages of any kind, however caused, arising from this software. */ #include "plugin.h" #include "sudoku.h" #include "templates.h" extern struct plugin_api* rb; #define assert(x) /* Common state encoding in a 32-bit integer: * bits 0-6 index * 7-15 state [bit high signals digits not possible] * 16-19 digit * 20 fixed [set if digit initially fixed] * 21 choice [set if solver chose this digit] * 22 ignore [set if ignored by reapply()] * 23 unused * 24-26 hint * 27-31 unused */ #define INDEX_MASK 0x0000007f #define GET_INDEX(val) (INDEX_MASK&(val)) #define SET_INDEX(val) (val) #define STATE_MASK 0x0000ff80 #define STATE_SHIFT (7-1) /* digits 1..9 */ #define DIGIT_STATE(digit) (1<<(STATE_SHIFT+(digit))) #define DIGIT_MASK 0x000f0000 #define DIGIT_SHIFT 16 #define GET_DIGIT(val) (((val)&DIGIT_MASK)>>(DIGIT_SHIFT)) #define SET_DIGIT(val) ((val)<<(DIGIT_SHIFT)) #define FIXED 0x00100000 #define CHOICE 0x00200000 #define IGNORED 0x00400000 /* Hint codes (c.f. singles(), pairs(), findmoves()) */ #define HINT_ROW 0x01000000 #define HINT_COLUMN 0x02000000 #define HINT_BLOCK 0x04000000 /* For a general board it may be necessary to do backtracking (i.e. to * rewind the board to an earlier state), and make choices during the * solution process. This can be implemented naturally using recursion, * but it is more efficient to maintain a single board. */ static int board[ 81 ]; /* Addressing board elements: linear array 0..80 */ #define ROW(idx) ((idx)/9) #define COLUMN(idx) ((idx)%9) #define BLOCK(idx) (3*(ROW(idx)/3)+(COLUMN(idx)/3)) #define INDEX(row,col) (9*(row)+(col)) /* Blocks indexed 0..9 */ #define IDX_BLOCK(row,col) (3*((row)/3)+((col)/3)) #define TOP_LEFT(block) (INDEX(block/3,block%3)) /* Board state */ #define STATE(idx) ((board[idx])&STATE_MASK) #define DIGIT(idx) (GET_DIGIT(board[idx])) #define HINT(idx) ((board[idx])&HINT_MASK) #define IS_EMPTY(idx) (0 == DIGIT(idx)) #define DISALLOWED(idx,digit) ((board[idx])&DIGIT_STATE(digit)) #define IS_FIXED(idx) (board[idx]&FIXED) /* Record move history, and maintain a counter for the current * move number. Concessions are made for the user interface, and * allow digit 0 to indicate clearing a square. The move history * is used to support 'undo's for the user interface, and hence * is larger than required - there is sufficient space to solve * the puzzle, undo every move, and then redo the puzzle - and * if the user requires more space, then the full history will be * lost. */ static int idx_history; static int history[ 3 * 81 ]; /* Possible moves for a given board (c.f. fillmoves()). * Also used by choice() when the deterministic solver has failed, * and for calculating user hints. The number of hints is stored * in num_hints, or -1 if no hints calculated. The number of hints * requested by the user since their last move is stored in req_hints; * if the user keeps requesting hints, start giving more information. * Finally, record the last hint issued to the user; attempt to give * different hints each time. */ static int idx_possible; static int possible[ 81 ]; static int pass; /* count # passes of deterministic solver */ /* Support for template file */ static int tmplt[ 81 ]; /* Template indices */ static int len_tmplt; /* Number of template indices */ /* Reset global state */ static void reset( void ) { rb->memset( board, 0x00, sizeof( board ) ); rb->memset( history, 0x00, sizeof( history ) ); idx_history = 0; pass = 0; } /* Management of the move history - compression */ static void compress( int limit ) { int i, j; for( i = j = 0 ; i < idx_history && j < limit ; ++i ) if( !( history[ i ] & IGNORED ) ) history[ j++ ] = history[ i ]; for( ; i < idx_history ; ++i ) history[ j++ ] = history[ i ]; idx_history = j; } /* Management of the move history - adding a move */ static void add_move( int idx, int digit, int choice ) { int i; if( sizeof( history ) / sizeof( int ) == idx_history ) compress( 81 ); /* Never ignore the last move */ history[ idx_history++ ] = SET_INDEX( idx ) | SET_DIGIT( digit ) | choice; /* Ignore all previous references to idx */ for( i = idx_history - 2 ; 0 <= i ; --i ) if( GET_INDEX( history[ i ] ) == idx ) { history[ i ] |= IGNORED; break; } } /* Iteration over rows/columns/blocks handled by specialised code. * Each function returns a block index - call must manage element/idx. */ static int idx_row( int el, int idx ) /* Index within a row */ { return INDEX( el, idx ); } static int idx_column( int el, int idx ) /* Index within a column */ { return INDEX( idx, el ); } static int idx_block( int el, int idx ) /* Index within a block */ { return INDEX( 3 * ( el / 3 ) + idx / 3, 3 * ( el % 3 ) + idx % 3 ); } /* Update board state after setting a digit (clearing not handled) */ static void update( int idx ) { const int row = ROW( idx ); const int col = COLUMN( idx ); const int block = IDX_BLOCK( row, col ); const int mask = DIGIT_STATE( DIGIT( idx ) ); int i; board[ idx ] |= STATE_MASK; /* filled - no choice possible */ /* Digit cannot appear in row, column or block */ for( i = 0 ; i < 9 ; ++i ) { board[ idx_row( row, i ) ] |= mask; board[ idx_column( col, i ) ] |= mask; board[ idx_block( block, i ) ] |= mask; } } /* Refresh board state, given move history. Note that this can yield * an incorrect state if the user has made errors - return -1 if an * incorrect state is generated; else return 0 for a correct state. */ static int reapply( void ) { int digit, idx, j; int allok = 0; rb->memset( board, 0x00, sizeof( board ) ); for( j = 0 ; j < idx_history ; ++j ) if( !( history[ j ] & IGNORED ) && 0 != GET_DIGIT( history[ j ] ) ) { idx = GET_INDEX( history[ j ] ); digit = GET_DIGIT( history[ j ] ); if( !IS_EMPTY( idx ) || DISALLOWED( idx, digit ) ) allok = -1; board[ idx ] = SET_DIGIT( digit ); if( history[ j ] & FIXED ) board[ idx ] |= FIXED; update( idx ); } return allok; } /* Clear moves, leaving fixed squares */ static void clear_moves( void ) { for( idx_history = 0 ; history[ idx_history ] & FIXED ; ++idx_history ) ; reapply( ); } static int digits[ 9 ]; /* # digits expressed in element square */ static int counts[ 9 ]; /* Count of digits (c.f. count_set_digits()) */ /* Count # set bits (within STATE_MASK) */ static int numset( int mask ) { int i, n = 0; for( i = STATE_SHIFT + 1 ; i <= STATE_SHIFT + 9 ; ++i ) if( mask & (1<memset( counts, 0x00, sizeof( counts ) ); for( i = 0 ; i < 9 ; ++i ) digits[ i ] = numset( board[ (*idx_fn)( el, i ) ] ); } /* Fill square with given digit, and update state. * Returns 0 on success, else -1 on error (i.e. invalid fill) */ static int fill( int idx, int digit ) { assert( 0 != digit ); if( !IS_EMPTY( idx ) ) return ( DIGIT( idx ) == digit ) ? 0 : -1; if( DISALLOWED( idx, digit ) ) return -1; board[ idx ] = SET_DIGIT( digit ); update( idx ); add_move( idx, digit, 0 ); return 0; } /* Find all squares with a single digit allowed -- do not mutate board */ static void singles( int el, int (*idx_fn)( int, int ), int hintcode ) { int i, j, idx; count_set_digits( el, idx_fn ); for( i = 0 ; i < 9 ; ++i ) { if( 1 == counts[ i ] ) { /* Digit 'i+1' appears just once in the element */ for( j = 0 ; j < 9 ; ++j ) { idx = (*idx_fn)( el, j ); if( !DISALLOWED( idx, i + 1 ) && idx_possible < 81 ) possible[ idx_possible++ ] = SET_INDEX( idx ) | SET_DIGIT( i + 1 ) | hintcode; } } if( 8 == digits[ i ] ) { /* 8 digits are masked at this position - just one remaining */ idx = (*idx_fn)( el, i ); for( j = 1 ; j <= 9 ; ++j ) if( 0 == ( STATE( idx ) & DIGIT_STATE( j ) ) && idx_possible < 81 ) possible[ idx_possible++ ] = SET_INDEX( idx ) | SET_DIGIT( j ) | hintcode; } } } /* Given the board state, find all possible 'moves' (i.e. squares with just * a single digit). * * Returns the number of (deterministic) moves (and fills the moves array), * or 0 if no moves are possible. This function does not mutate the board * state, and hence, can return the same move multiple times (with * different hints). */ static int findmoves( void ) { int i; rb->yield(); idx_possible = 0; for( i = 0 ; i < 9 ; ++i ) { singles( i, idx_row, HINT_ROW ); singles( i, idx_column, HINT_COLUMN ); singles( i, idx_block, HINT_BLOCK ); } return idx_possible; } /* Strategies for refining the board state * - 'pairs' if there are two unfilled squares in a given row/column/ * block with the same state, and just two possibilities, * then all other unfilled squares in the row/column/block * CANNOT be either of these digits. * - 'block' if the unknown squares in a block all appear in the same * row or column, then all unknown squares outside the block * and in the same row/column cannot be any of the unknown * squares in the block. * - 'common' if all possible locations for a digit in a block appear * in a row or column, then that digit cannot appear outside * the block in the same row or column. * - 'position2' if the positions of 2 unknown digits in a block match * identically in precisely 2 positions, then those 2 positions * can only contain the 2 unknown digits. * * Recall that each state bit uses a 1 to prevent a digit from * filling that square. */ static void pairs( int el, int (*idx_fn)( int, int ) ) { int i, j, k, mask, idx; rb->yield(); for( i = 0 ; i < 8 ; ++i ) if( 7 == digits[ i ] ) /* 2 digits unknown */ for( j = i + 1 ; j < 9 ; ++j ) { idx = (*idx_fn)( el, i ); if( STATE( idx ) == STATE( (*idx_fn)( el, j ) ) ) { /* Found a row/column pair - mask other entries */ mask = STATE_MASK ^ (STATE_MASK & board[ idx ] ); for( k = 0 ; k < i ; ++k ) board[ (*idx_fn)( el, k ) ] |= mask; for( k = i + 1 ; k < j ; ++k ) board[ (*idx_fn)( el, k ) ] |= mask; for( k = j + 1 ; k < 9 ; ++k ) board[ (*idx_fn)( el, k ) ] |= mask; digits[ j ] = -1; /* now processed */ } } } /* Worker: mask elements outside block */ static void exmask( int mask, int block, int el, int (*idx_fn)( int, int ) ) { int i, idx; rb->yield(); for( i = 0 ; i < 9 ; ++i ) { idx = (*idx_fn)( el, i ); if( block != BLOCK( idx ) && IS_EMPTY( idx ) ) board[ idx ] |= mask; } } /* Worker for block() */ static void exblock( int block, int el, int (*idx_fn)( int, int ) ) { int i, idx, mask; rb->yield(); /* By assumption, all unknown squares in the block appear in the * same row/column, so to construct a mask for these squares, it * is sufficient to invert the mask for the known squares in the * block. */ mask = 0; for( i = 0 ; i < 9 ; ++i ) { idx = idx_block( block, i ); if( !IS_EMPTY( idx ) ) mask |= DIGIT_STATE( DIGIT( idx ) ); } exmask( mask ^ STATE_MASK, block, el, idx_fn ); } static void block( int el ) { int i, idx = 0, row, col; rb->yield(); /* Find first unknown square */ for( i = 0 ; i < 9 && !IS_EMPTY( idx = idx_block( el, i ) ) ; ++i ) ; if( i < 9 ) { assert( IS_EMPTY( idx ) ); row = ROW( idx ); col = COLUMN( idx ); for( ++i ; i < 9 ; ++i ) { idx = idx_block( el, i ); if( IS_EMPTY( idx ) ) { if( ROW( idx ) != row ) row = -1; if( COLUMN( idx ) != col ) col = -1; } } if( 0 <= row ) exblock( el, row, idx_row ); if( 0 <= col ) exblock( el, col, idx_column ); } } static void common( int el ) { int i, idx, row, col, digit, mask; rb->yield(); for( digit = 1 ; digit <= 9 ; ++digit ) { mask = DIGIT_STATE( digit ); row = col = -1; /* Value '9' indicates invalid */ for( i = 0 ; i < 9 ; ++i ) { /* Digit possible? */ idx = idx_block( el, i ); if( IS_EMPTY( idx ) && 0 == ( board[ idx ] & mask ) ) { if( row < 0 ) row = ROW( idx ); else if( row != ROW( idx ) ) row = 9; /* Digit appears in multiple rows */ if( col < 0 ) col = COLUMN( idx ); else if( col != COLUMN( idx ) ) col = 9; /* Digit appears in multiple columns */ } } if( -1 != row && row < 9 ) exmask( mask, el, row, idx_row ); if( -1 != col && col < 9 ) exmask( mask, el, col, idx_column ); } } /* Encoding of positions of a digit (c.f. position2()) - abuse DIGIT_STATE */ static int posn_digit[ 10 ]; static void position2( int el ) { int digit, digit2, i, mask, mask2, posn, count, idx; rb->yield(); /* Calculate positions of each digit within block */ for( digit = 1 ; digit <= 9 ; ++digit ) { mask = DIGIT_STATE( digit ); posn_digit[ digit ] = count = posn = 0; for( i = 0 ; i < 9 ; ++i ) if( 0 == ( mask & board[ idx_block( el, i ) ] ) ) { ++count; posn |= DIGIT_STATE( i ); } if( 2 == count ) posn_digit[ digit ] = posn; } /* Find pairs of matching positions, and mask */ for( digit = 1 ; digit < 9 ; ++digit ) if( 0 != posn_digit[ digit ] ) for( digit2 = digit + 1 ; digit2 <= 9 ; ++digit2 ) if( posn_digit[ digit ] == posn_digit[ digit2 ] ) { mask = STATE_MASK ^ ( DIGIT_STATE( digit ) | DIGIT_STATE( digit2 ) ); mask2 = DIGIT_STATE( digit ); for( i = 0 ; i < 9 ; ++i ) { idx = idx_block( el, i ); if( 0 == ( mask2 & board[ idx ] ) ) { assert( 0 == (DIGIT_STATE(digit2) & board[idx]) ); board[ idx ] |= mask; } } posn_digit[ digit ] = posn_digit[ digit2 ] = 0; break; } } /* Find some moves for the board; starts with a simple approach (finding * singles), and if no moves found, starts using more involved strategies * until a move is found. The more advanced strategies can mask states * in the board, making this an efficient mechanism, but difficult for * a human to understand. */ static int allmoves( void ) { int i, n; rb->yield(); n = findmoves( ); if( 0 < n ) return n; for( i = 0 ; i < 9 ; ++i ) { count_set_digits( i, idx_row ); pairs( i, idx_row ); count_set_digits( i, idx_column ); pairs( i, idx_column ); count_set_digits( i, idx_block ); pairs( i, idx_block ); } n = findmoves( ); if( 0 < n ) return n; for( i = 0 ; i < 9 ; ++i ) { block( i ); common( i ); position2( i ); } return findmoves( ); } /* Helper: sort based on index */ static int cmpindex( const void * a, const void * b ) { return GET_INDEX( *((const int *)b) ) - GET_INDEX( *((const int *)a) ); } /* Return number of hints. The hints mechanism should attempt to find * 'easy' moves first, and if none are possible, then try for more * cryptic moves. */ int findhints( void ) { int i, n, mutated = 0; rb->yield(); n = findmoves( ); if( n < 2 ) { /* Each call to pairs() can mutate the board state, making the * hints very, very cryptic... so later undo the mutations. */ for( i = 0 ; i < 9 ; ++i ) { count_set_digits( i, idx_row ); pairs( i, idx_row ); count_set_digits( i, idx_column ); pairs( i, idx_column ); count_set_digits( i, idx_block ); pairs( i, idx_block ); } mutated = 1; n = findmoves( ); } if( n < 2 ) { for( i = 0 ; i < 9 ; ++i ) { block( i ); common( i ); } mutated = 1; n = findmoves( ); } /* Sort the possible moves, and allow just one hint per square */ if( 0 < n ) { int i, j; rb->qsort( possible, n, sizeof( int ), cmpindex ); for( i = 0, j = 1 ; j < n ; ++j ) { if( GET_INDEX( possible[ i ] ) == GET_INDEX( possible[ j ] ) ) { /* Let the user make mistakes - do not assume the * board is in a consistent state. */ if( GET_DIGIT( possible[i] ) == GET_DIGIT( possible[j] ) ) possible[ i ] |= possible[ j ]; } else i = j; } n = i + 1; } /* Undo any mutations of the board state */ if( mutated ) reapply( ); return n; } /* Deterministic solver; return 0 on success, else -1 on error. */ static int deterministic( void ) { int i, n; rb->yield(); n = allmoves( ); while( 0 < n ) { ++pass; for( i = 0 ; i < n ; ++i ) if( -1 == fill( GET_INDEX( possible[ i ] ), GET_DIGIT( possible[ i ] ) ) ) return -1; n = allmoves( ); } return 0; } /* Return index of square for choice. * * If no choice is possible (i.e. board solved or inconsistent), * return -1. * * The current implementation finds a square with the minimum * number of unknown digits (i.e. maximum # masked digits). */ static int cmp( const void * e1, const void * e2 ) { return GET_DIGIT( *(const int *)e2 ) - GET_DIGIT( *(const int *)e1 ); } static int choice( void ) { int i, n; rb->yield(); for( n = i = 0 ; i < 81 ; ++i ) if( IS_EMPTY( i ) ) { possible[ n ] = SET_INDEX( i ) | SET_DIGIT( numset( board[ i ] ) ); /* Inconsistency if square unknown, but nothing possible */ if( 9 == GET_DIGIT( possible[ n ] ) ) return -2; ++n; } if( 0 == n ) return -1; /* All squares known */ rb->qsort( possible, n, sizeof( possible[ 0 ] ), cmp ); return GET_INDEX( possible[ 0 ] ); } /* Choose a digit for the given square. * The starting digit is passed as a parameter. * Returns -1 if no choice possible. */ static int choose( int idx, int digit ) { rb->yield(); for( ; digit <= 9 ; ++digit ) if( !DISALLOWED( idx, digit ) ) { board[ idx ] = SET_DIGIT( digit ); update( idx ); add_move( idx, digit, CHOICE ); return digit; } return -1; } /* Backtrack to a previous choice point, and attempt to reseed * the search. Return -1 if no further choice possible, or * the index of the changed square. * * Assumes that the move history and board are valid. */ static int backtrack( void ) { int digit, idx; rb->yield(); for( ; 0 <= --idx_history ; ) if( history[ idx_history ] & CHOICE ) { /* Remember the last choice, and advance */ idx = GET_INDEX( history[ idx_history ] ); digit = GET_DIGIT( history[ idx_history ] ) + 1; reapply( ); if( -1 != choose( idx, digit ) ) return idx; } return -1; } /* Attempt to solve 'board'; return 0 on success else -1 on error. * * The solution process attempts to fill-in deterministically as * much of the board as possible. Once that is no longer possible, * need to choose a square to fill in. */ static int solve( void ) { int idx; rb->yield(); while( 1 ) { if( 0 == deterministic( ) ) { /* Solved, make a new choice, or rewind a previous choice */ idx = choice( ); if( -1 == idx ) return 0; else if( ( idx < 0 || -1 == choose( idx, 1 ) ) && -1 == backtrack( ) ) return -1; } else /* rewind to a previous choice */ if( -1 == backtrack( ) ) return -1; } return -1; } static int init_template( int template ) { int i, row, col; int mask; reset( ); len_tmplt = 0; /* Consume grid - allow leading spaces and comments at end */ for( row = 0 ; row < 9 ; ++row ) { mask=0x100; for( col = 0 ; col < 9 ; ++col ) { if (templates[template][row] & mask) tmplt[ len_tmplt++ ] = INDEX( row, col ); mask /= 2; } } /* Construct move history for a template */ idx_history = 0; for( i = 0 ; i < 81 ; ++i ) if( 0 != DIGIT( i ) ) history[ idx_history++ ] = i | (DIGIT( i )<<8); /* Finally, markup all of these moves as 'fixed' */ for( i = 0 ; i < idx_history ; ++i ) history[ i ] |= FIXED; return 0; } /* Classify a SuDoKu, given its solution. * * The classification is based on the average number of possible moves * for each pass of the deterministic solver - it is a rather simplistic * measure, but gives reasonable results. Note also that the classification * is based on the first solution found (but does handle the pathological * case of multiple solutions). Note that the average moves per pass * depends just on the number of squares initially set... this simplifies * the statistics collection immensely, requiring just the number of passes * to be counted. * * Return 0 on error, else a string classification. */ static char * classify( void ) { int i, score; rb->yield(); pass = 0; clear_moves( ); if( -1 == solve( ) ) return 0; score = 81; for( i = 0 ; i < 81 ; ++i ) if( IS_FIXED( i ) ) --score; assert( 81 == idx_history ); for( i = 0 ; i < 81 ; ++i ) if( history[ i ] & CHOICE ) score -= 5; if( 15 * pass < score ) return "very easy"; else if( 11 * pass < score ) return "easy"; else if( 7 * pass < score ) return "medium"; else if( 4 * pass < score ) return "hard"; else return "fiendish"; } /* exchange disjoint, identical length blocks of data */ static void exchange( int * a, int * b, int len ) { int i, tmp; for( i = 0 ; i < len ; ++i ) { tmp = a[ i ]; a[ i ] = b[ i ]; b[ i ] = tmp; } } /* rotate left */ static void rotate1_left( int * a, int len ) { int i, tmp; tmp = a[ 0 ]; for( i = 1 ; i < len ; ++i ) a[ i - 1 ] = a[ i ]; a[ len - 1 ] = tmp; } /* rotate right */ static void rotate1_right( int * a, int len ) { int i, tmp; tmp = a[ len - 1 ]; for( i = len - 1 ; 0 < i ; --i ) a[ i ] = a[ i - 1 ]; a[ 0 ] = tmp; } /* Generalised left rotation - there is a naturally recursive * solution that is best implementation using iteration. * Note that it is not necessary to do repeated unit rotations. * * This function is analogous to 'cutting' a 'pack of cards'. * * On entry: 0 < idx < len */ static void rotate( int * a, int len, int idx ) { int xdi = len - idx; int delta = idx - xdi; while( 0 != delta && 0 != idx ) { if( delta < 0 ) { if( 1 == idx ) { rotate1_left( a, len ); idx = 0; } else { exchange( a, a + xdi, idx ); len = xdi; } } else /* 0 < delta */ { if( 1 == xdi ) { rotate1_right( a, len ); idx = 0; } else { exchange( a, a + idx, xdi ); a += xdi; len = idx; idx -= xdi; } } xdi = len - idx; delta = idx - xdi; } if( 0 < idx ) exchange( a, a + idx, idx ); } /* Shuffle an array of integers */ static void shuffle( int * a, int len ) { int i, j, tmp; i = len; while( 1 <= i ) { j = rb->rand( ) % i; tmp = a[ --i ]; a[ i ] = a[ j ]; a[ j ] = tmp; } } /* Generate a SuDoKu puzzle * * The generation process selects a random template, and then attempts * to fill in the exposed squares to generate a board. The order of the * digits and of filling in the exposed squares are random. */ /* Select random template; sets tmplt, len_tmplt */ static void select_template( void ) { int i = rb->rand( ) % NUM_TEMPLATES; init_template( i ); } static void generate( void ) { static int digits[ 9 ]; int i; start: for( i = 0 ; i < 9 ; ++i ) digits[ i ] = i + 1; rotate( digits, 9, 1 + rb->rand( ) % 8 ); shuffle( digits, 9 ); select_template( ); rotate( tmplt, len_tmplt, 1 + rb->rand( ) % ( len_tmplt - 1 ) ); shuffle( tmplt, len_tmplt ); reset( ); /* construct a new board */ for( i = 0 ; i < len_tmplt ; ++i ) fill( tmplt[ i ], digits[ i % 9 ] ); rb->yield(); if( 0 != solve( ) || idx_history < 81 ) goto start; rb->yield(); for( i = 0 ; i < len_tmplt ; ++i ) board[ tmplt[ i ] ] |= FIXED; /* Construct fixed squares */ for( idx_history = i = 0 ; i < 81 ; ++i ) if( IS_FIXED( i ) ) history[ idx_history++ ] = SET_INDEX( i ) | SET_DIGIT( DIGIT( i ) ) | FIXED; clear_moves( ); if( 0 != solve( ) || idx_history < 81 ) goto start; if( -1 != backtrack( ) && 0 == solve( ) ) goto start; clear_moves( ); } bool sudoku_generate_board(struct sudoku_state_t* state, char** difficulty) { int r,c,i; rb->srand(*rb->current_tick); generate(); i=0; for (r=0;r<9;r++) { for (c=0;c<9;c++) { if( IS_EMPTY( i ) ) state->startboard[r][c]='0'; else state->startboard[r][c]='0'+GET_DIGIT( board[ i ] ); state->currentboard[r][c]=state->startboard[r][c]; i++; } } *difficulty = classify( ); return true; }