/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Linus Nielsen Feltzing * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "pcm_record.h" #include "system.h" #include "kernel.h" #include "logf.h" #include "thread.h" #include #include "storage.h" #include "usb.h" #include "buffer.h" #include "general.h" #include "audio.h" #include "sound.h" #include "metadata.h" #ifdef HAVE_SPDIF_IN #include "spdif.h" #endif /***************************************************************************/ extern unsigned int codec_thread_id; /** General recording state **/ static bool is_recording; /* We are recording */ static bool is_paused; /* We have paused */ static unsigned long errors; /* An error has occured */ static unsigned long warnings; /* Warning */ static int flush_interrupts = 0; /* Number of messages queued that should interrupt a flush in progress - for a safety net and a prompt response to stop, split and pause requests - only interrupts a flush initiated by pcmrec_flush(0) */ /* Utility functions for setting/clearing flushing interrupt flag */ static inline void flush_interrupt(void) { flush_interrupts++; logf("flush int: %d", flush_interrupts); } static inline void clear_flush_interrupt(void) { if (--flush_interrupts < 0) flush_interrupts = 0; } /** Stats on encoded data for current file **/ static size_t num_rec_bytes; /* Num bytes recorded */ static unsigned long num_rec_samples; /* Number of PCM samples recorded */ /** Stats on encoded data for all files from start to stop **/ #if 0 static unsigned long long accum_rec_bytes; /* total size written to chunks */ static unsigned long long accum_pcm_samples; /* total pcm count processed */ #endif /* Keeps data about current file and is sent as event data for codec */ static struct enc_file_event_data rec_fdata IDATA_ATTR = { .chunk = NULL, .new_enc_size = 0, .new_num_pcm = 0, .rec_file = -1, .num_pcm_samples = 0 }; /** These apply to current settings **/ static int rec_source; /* current rec_source setting */ static int rec_frequency; /* current frequency setting */ static unsigned long sample_rate; /* Sample rate in HZ */ static int num_channels; /* Current number of channels */ static int rec_mono_mode; /* how mono is created */ static struct encoder_config enc_config; /* Current encoder configuration */ static unsigned long pre_record_ticks; /* pre-record time in ticks */ /**************************************************************************** use 2 circular buffers: pcm_buffer=DMA output buffer: chunks (8192 Bytes) of raw pcm audio data enc_buffer=encoded audio buffer: storage for encoder output data Flow: 1. when entering recording_screen DMA feeds the ringbuffer pcm_buffer 2. if enough pcm data are available the encoder codec does encoding of pcm chunks (4-8192 Bytes) into ringbuffer enc_buffer in codec_thread 3. pcmrec_callback detects enc_buffer 'near full' and writes data to disk Functions calls (basic encoder steps): 1.main: audio_load_encoder(); start the encoder 2.encoder: enc_get_inputs(); get encoder recording settings 3.encoder: enc_set_parameters(); set the encoder parameters 4.encoder: enc_get_pcm_data(); get n bytes of unprocessed pcm data 5.encoder: enc_unget_pcm_data(); put n bytes of data back (optional) 6.encoder: enc_get_chunk(); get a ptr to next enc chunk 7.encoder: compress and store data to enc chunk 8.encoder: enc_finish_chunk(); inform main about chunk processed and is available to be written to a file. Encoder can place any number of chunks of PCM data in a single output chunk but must stay within its output chunk size 9.encoder: repeat 4. to 8. A.pcmrec: enc_events_callback(); called for certain events (*) Optional step ****************************************************************************/ /** buffer parameters where incoming PCM data is placed **/ #define PCM_NUM_CHUNKS 256 /* Power of 2 */ #define PCM_CHUNK_SIZE 8192 /* Power of 2 */ #define PCM_CHUNK_MASK (PCM_NUM_CHUNKS*PCM_CHUNK_SIZE - 1) #define GET_PCM_CHUNK(offset) ((long *)(pcm_buffer + (offset))) #define GET_ENC_CHUNK(index) ENC_CHUNK_HDR(enc_buffer + enc_chunk_size*(index)) #define INC_ENC_INDEX(index) \ { if (++index >= enc_num_chunks) index = 0; } #define DEC_ENC_INDEX(index) \ { if (--index < 0) index = enc_num_chunks - 1; } static size_t rec_buffer_size; /* size of available buffer */ static unsigned char *pcm_buffer; /* circular recording buffer */ static unsigned char *enc_buffer; /* circular encoding buffer */ #ifdef DEBUG static unsigned long *wrap_id_p; /* magic at wrap position - a debugging aid to check if the encoder data spilled out of its chunk */ #endif /* DEBUG */ static volatile int dma_wr_pos; /* current DMA write pos */ static int pcm_rd_pos; /* current PCM read pos */ static int pcm_enc_pos; /* position encoder is processing */ static volatile bool dma_lock; /* lock DMA write position */ static int enc_wr_index; /* encoder chunk write index */ static int enc_rd_index; /* encoder chunk read index */ static int enc_num_chunks; /* number of chunks in ringbuffer */ static size_t enc_chunk_size; /* maximum encoder chunk size */ static unsigned long enc_sample_rate; /* sample rate used by encoder */ static bool pcmrec_context = false; /* called by pcmrec thread? */ static bool pcm_buffer_empty; /* all pcm chunks processed? */ /** file flushing **/ static int low_watermark; /* Low watermark to stop flush */ static int high_watermark; /* max chunk limit for data flush */ static unsigned long spinup_time = 35*HZ/10; /* Fudged spinup time */ static int last_storage_spinup_time = -1;/* previous spin time used */ #ifdef HAVE_PRIORITY_SCHEDULING static int flood_watermark; /* boost thread priority when here */ #endif /* Constants that control watermarks */ #define LOW_SECONDS 1 /* low watermark time till empty */ #define MINI_CHUNKS 10 /* chunk count for mini flush */ #ifdef HAVE_PRIORITY_SCHEDULING #define PRIO_SECONDS 10 /* max flush time before priority boost */ #endif #if MEM <= 16 #define PANIC_SECONDS 5 /* flood watermark time until full */ #define FLUSH_SECONDS 7 /* flush watermark time until full */ #else #define PANIC_SECONDS 8 #define FLUSH_SECONDS 10 #endif /* MEM */ /** encoder events **/ static void (*enc_events_callback)(enum enc_events event, void *data); /** Path queue for files to write **/ #define FNQ_MIN_NUM_PATHS 16 /* minimum number of paths to hold */ #define FNQ_MAX_NUM_PATHS 64 /* maximum number of paths to hold */ static unsigned char *fn_queue; /* pointer to first filename */ static ssize_t fnq_size; /* capacity of queue in bytes */ static int fnq_rd_pos; /* current read position */ static int fnq_wr_pos; /* current write position */ #define FNQ_NEXT(pos) \ ({ int p = (pos) + MAX_PATH; \ if (p >= fnq_size) \ p = 0; \ p; }) #define FNQ_PREV(pos) \ ({ int p = (pos) - MAX_PATH; \ if (p < 0) \ p = fnq_size - MAX_PATH; \ p; }) enum { PCMREC_FLUSH_INTERRUPTABLE = 0x8000000, /* Flush can be interrupted by incoming messages - combine with other constants */ PCMREC_FLUSH_ALL = 0x7ffffff, /* Flush all files */ PCMREC_FLUSH_MINI = 0x7fffffe, /* Flush a small number of chunks */ PCMREC_FLUSH_IF_HIGH = 0x0000000, /* Flush if high watermark reached */ }; /***************************************************************************/ static struct event_queue pcmrec_queue SHAREDBSS_ATTR; static struct queue_sender_list pcmrec_queue_send SHAREDBSS_ATTR; static long pcmrec_stack[3*DEFAULT_STACK_SIZE/sizeof(long)]; static const char pcmrec_thread_name[] = "pcmrec"; static unsigned int pcmrec_thread_id = 0; static void pcmrec_thread(void); enum { PCMREC_NULL = 0, PCMREC_INIT, /* enable recording */ PCMREC_CLOSE, /* close recording */ PCMREC_OPTIONS, /* set recording options */ PCMREC_RECORD, /* record a new file */ PCMREC_STOP, /* stop the current recording */ PCMREC_PAUSE, /* pause the current recording */ PCMREC_RESUME, /* resume the current recording */ #if 0 PCMREC_FLUSH_NUM, /* flush a number of files out */ #endif }; /*******************************************************************/ /* Functions that are not executing in the pcmrec_thread first */ /*******************************************************************/ /* Callback for when more data is ready - called in interrupt context */ static int pcm_rec_have_more(int status) { if (status < 0) { /* some error condition */ if (status == DMA_REC_ERROR_DMA) { /* Flush recorded data to disk and stop recording */ queue_post(&pcmrec_queue, PCMREC_STOP, 0); return -1; } /* else try again next transmission */ } else if (!dma_lock) { /* advance write position */ int next_pos = (dma_wr_pos + PCM_CHUNK_SIZE) & PCM_CHUNK_MASK; /* set pcm ovf if processing start position is inside current write chunk */ if ((unsigned)(pcm_enc_pos - next_pos) < PCM_CHUNK_SIZE) warnings |= PCMREC_W_PCM_BUFFER_OVF; dma_wr_pos = next_pos; } pcm_record_more(GET_PCM_CHUNK(dma_wr_pos), PCM_CHUNK_SIZE); return 0; } /* pcm_rec_have_more */ static void reset_hardware(void) { /* reset pcm to defaults (playback only) */ pcm_set_frequency(HW_SAMPR_DEFAULT); audio_set_output_source(AUDIO_SRC_PLAYBACK); pcm_apply_settings(); } /** pcm_rec_* group **/ /** * Clear all errors and warnings */ void pcm_rec_error_clear(void) { errors = warnings = 0; } /* pcm_rec_error_clear */ /** * Check mode, errors and warnings */ unsigned long pcm_rec_status(void) { unsigned long ret = 0; if (is_recording) ret |= AUDIO_STATUS_RECORD; else if (pre_record_ticks) ret |= AUDIO_STATUS_PRERECORD; if (is_paused) ret |= AUDIO_STATUS_PAUSE; if (errors) ret |= AUDIO_STATUS_ERROR; if (warnings) ret |= AUDIO_STATUS_WARNING; return ret; } /* pcm_rec_status */ /** * Return warnings that have occured since recording started */ unsigned long pcm_rec_get_warnings(void) { return warnings; } #if 0 int pcm_rec_current_bitrate(void) { if (accum_pcm_samples == 0) return 0; return (int)(8*accum_rec_bytes*enc_sample_rate / (1000*accum_pcm_samples)); } /* pcm_rec_current_bitrate */ #endif #if 0 int pcm_rec_encoder_afmt(void) { return enc_config.afmt; } /* pcm_rec_encoder_afmt */ #endif #if 0 int pcm_rec_rec_format(void) { return afmt_rec_format[enc_config.afmt]; } /* pcm_rec_rec_format */ #endif #ifdef HAVE_SPDIF_IN unsigned long pcm_rec_sample_rate(void) { /* Which is better ?? */ #if 0 return enc_sample_rate; #endif return sample_rate; } /* audio_get_sample_rate */ #endif /** * Creates pcmrec_thread */ void pcm_rec_init(void) { queue_init(&pcmrec_queue, true); pcmrec_thread_id = create_thread(pcmrec_thread, pcmrec_stack, sizeof(pcmrec_stack), 0, pcmrec_thread_name IF_PRIO(, PRIORITY_RECORDING) IF_COP(, CPU)); queue_enable_queue_send(&pcmrec_queue, &pcmrec_queue_send, pcmrec_thread_id); } /* pcm_rec_init */ /** audio_* group **/ /** * Initializes recording - call before calling any other recording function */ void audio_init_recording(unsigned int buffer_offset) { logf("audio_init_recording"); queue_send(&pcmrec_queue, PCMREC_INIT, 0); logf("audio_init_recording done"); (void)buffer_offset; } /* audio_init_recording */ /** * Closes recording - call audio_stop_recording first */ void audio_close_recording(void) { logf("audio_close_recording"); queue_send(&pcmrec_queue, PCMREC_CLOSE, 0); logf("audio_close_recording done"); } /* audio_close_recording */ /** * Sets recording parameters */ void audio_set_recording_options(struct audio_recording_options *options) { logf("audio_set_recording_options"); queue_send(&pcmrec_queue, PCMREC_OPTIONS, (intptr_t)options); logf("audio_set_recording_options done"); } /* audio_set_recording_options */ /** * Start recording if not recording or else split */ void audio_record(const char *filename) { logf("audio_record: %s", filename); flush_interrupt(); queue_send(&pcmrec_queue, PCMREC_RECORD, (intptr_t)filename); logf("audio_record_done"); } /* audio_record */ /** * audio_record wrapper for API compatibility with HW codec */ void audio_new_file(const char *filename) { audio_record(filename); } /* audio_new_file */ /** * Stop current recording if recording */ void audio_stop_recording(void) { logf("audio_stop_recording"); flush_interrupt(); queue_post(&pcmrec_queue, PCMREC_STOP, 0); logf("audio_stop_recording done"); } /* audio_stop_recording */ /** * Pause current recording */ void audio_pause_recording(void) { logf("audio_pause_recording"); flush_interrupt(); queue_post(&pcmrec_queue, PCMREC_PAUSE, 0); logf("audio_pause_recording done"); } /* audio_pause_recording */ /** * Resume current recording if paused */ void audio_resume_recording(void) { logf("audio_resume_recording"); queue_post(&pcmrec_queue, PCMREC_RESUME, 0); logf("audio_resume_recording done"); } /* audio_resume_recording */ /** * Note that microphone is mono, only left value is used * See audiohw_set_recvol() for exact ranges. * * @param type AUDIO_GAIN_MIC, AUDIO_GAIN_LINEIN * */ void audio_set_recording_gain(int left, int right, int type) { //logf("rcmrec: t=%d l=%d r=%d", type, left, right); audiohw_set_recvol(left, right, type); } /* audio_set_recording_gain */ /** Information about current state **/ /** * Return current recorded time in ticks (playback eqivalent time) */ unsigned long audio_recorded_time(void) { if (!is_recording || enc_sample_rate == 0) return 0; /* return actual recorded time a la encoded data even if encoder rate doesn't match the pcm rate */ return (long)(HZ*(unsigned long long)num_rec_samples / enc_sample_rate); } /* audio_recorded_time */ /** * Return number of bytes encoded to output */ unsigned long audio_num_recorded_bytes(void) { if (!is_recording) return 0; return num_rec_bytes; } /* audio_num_recorded_bytes */ /***************************************************************************/ /* */ /* Functions that execute in the context of pcmrec_thread */ /* */ /***************************************************************************/ /** Filename Queue **/ /* returns true if the queue is empty */ static inline bool pcmrec_fnq_is_empty(void) { return fnq_rd_pos == fnq_wr_pos; } /* pcmrec_fnq_is_empty */ /* empties the filename queue */ static inline void pcmrec_fnq_set_empty(void) { fnq_rd_pos = fnq_wr_pos; } /* pcmrec_fnq_set_empty */ /* returns true if the queue is full */ static bool pcmrec_fnq_is_full(void) { ssize_t size = fnq_wr_pos - fnq_rd_pos; if (size < 0) size += fnq_size; return size >= fnq_size - MAX_PATH; } /* pcmrec_fnq_is_full */ /* queue another filename - will overwrite oldest one if full */ static bool pcmrec_fnq_add_filename(const char *filename) { strncpy(fn_queue + fnq_wr_pos, filename, MAX_PATH); fnq_wr_pos = FNQ_NEXT(fnq_wr_pos); if (fnq_rd_pos != fnq_wr_pos) return true; /* queue full */ fnq_rd_pos = FNQ_NEXT(fnq_rd_pos); return true; } /* pcmrec_fnq_add_filename */ /* replace the last filename added */ static bool pcmrec_fnq_replace_tail(const char *filename) { int pos; if (pcmrec_fnq_is_empty()) return false; pos = FNQ_PREV(fnq_wr_pos); strncpy(fn_queue + pos, filename, MAX_PATH); return true; } /* pcmrec_fnq_replace_tail */ /* pulls the next filename from the queue */ static bool pcmrec_fnq_get_filename(char *filename) { if (pcmrec_fnq_is_empty()) return false; if (filename) strncpy(filename, fn_queue + fnq_rd_pos, MAX_PATH); fnq_rd_pos = FNQ_NEXT(fnq_rd_pos); return true; } /* pcmrec_fnq_get_filename */ /* close the file number pointed to by fd_p */ static void pcmrec_close_file(int *fd_p) { if (*fd_p < 0) return; /* preserve error */ if (close(*fd_p) != 0) errors |= PCMREC_E_IO; *fd_p = -1; } /* pcmrec_close_file */ /** Data Flushing **/ /** * called after callback to update sizes if codec changed the amount of data * a chunk represents */ static inline void pcmrec_update_sizes_inl(size_t prev_enc_size, unsigned long prev_num_pcm) { if (rec_fdata.new_enc_size != prev_enc_size) { ssize_t size_diff = rec_fdata.new_enc_size - prev_enc_size; num_rec_bytes += size_diff; #if 0 accum_rec_bytes += size_diff; #endif } if (rec_fdata.new_num_pcm != prev_num_pcm) { unsigned long pcm_diff = rec_fdata.new_num_pcm - prev_num_pcm; num_rec_samples += pcm_diff; #if 0 accum_pcm_samples += pcm_diff; #endif } } /* pcmrec_update_sizes_inl */ /* don't need to inline every instance */ static void pcmrec_update_sizes(size_t prev_enc_size, unsigned long prev_num_pcm) { pcmrec_update_sizes_inl(prev_enc_size, prev_num_pcm); } /* pcmrec_update_sizes */ static void pcmrec_start_file(void) { size_t enc_size = rec_fdata.new_enc_size; unsigned long num_pcm = rec_fdata.new_num_pcm; int curr_rec_file = rec_fdata.rec_file; char filename[MAX_PATH]; /* must always pull the filename that matches with this queue */ if (!pcmrec_fnq_get_filename(filename)) { logf("start file: fnq empty"); *filename = '\0'; errors |= PCMREC_E_FNQ_DESYNC; } else if (errors != 0) { logf("start file: error already"); } else if (curr_rec_file >= 0) { /* Any previous file should have been closed */ logf("start file: file already open"); errors |= PCMREC_E_FNQ_DESYNC; } if (errors != 0) rec_fdata.chunk->flags |= CHUNKF_ERROR; /* encoder can set error flag here and should increase enc_new_size and pcm_new_size to reflect additional data written if any */ rec_fdata.filename = filename; enc_events_callback(ENC_START_FILE, &rec_fdata); if (errors == 0 && (rec_fdata.chunk->flags & CHUNKF_ERROR)) { logf("start file: enc error"); errors |= PCMREC_E_ENCODER; } if (errors != 0) { pcmrec_close_file(&curr_rec_file); /* Write no more to this file */ rec_fdata.chunk->flags |= CHUNKF_END_FILE; } else { pcmrec_update_sizes(enc_size, num_pcm); } rec_fdata.chunk->flags &= ~CHUNKF_START_FILE; } /* pcmrec_start_file */ static inline void pcmrec_write_chunk(void) { size_t enc_size = rec_fdata.new_enc_size; unsigned long num_pcm = rec_fdata.new_num_pcm; if (errors != 0) rec_fdata.chunk->flags |= CHUNKF_ERROR; enc_events_callback(ENC_WRITE_CHUNK, &rec_fdata); if ((long)rec_fdata.chunk->flags >= 0) { pcmrec_update_sizes_inl(enc_size, num_pcm); } else if (errors == 0) { logf("wr chk enc error %lu %lu", rec_fdata.chunk->enc_size, rec_fdata.chunk->num_pcm); errors |= PCMREC_E_ENCODER; } } /* pcmrec_write_chunk */ static void pcmrec_end_file(void) { /* all data in output buffer for current file will have been written and encoder can now do any nescessary steps to finalize the written file */ size_t enc_size = rec_fdata.new_enc_size; unsigned long num_pcm = rec_fdata.new_num_pcm; enc_events_callback(ENC_END_FILE, &rec_fdata); if (errors == 0) { if (rec_fdata.chunk->flags & CHUNKF_ERROR) { logf("end file: enc error"); errors |= PCMREC_E_ENCODER; } else { pcmrec_update_sizes(enc_size, num_pcm); } } /* Force file close if error */ if (errors != 0) pcmrec_close_file(&rec_fdata.rec_file); rec_fdata.chunk->flags &= ~CHUNKF_END_FILE; } /* pcmrec_end_file */ /** * Update buffer watermarks with spinup time compensation * * All this assumes reasonable data rates, chunk sizes and sufficient * memory for the most part. Some dumb checks are included but perhaps * are pointless since this all will break down at extreme limits that * are currently not applicable to any supported device. */ static void pcmrec_refresh_watermarks(void) { logf("ata spinup: %d", storage_spinup_time()); /* set the low mark for when flushing stops if automatic */ low_watermark = (LOW_SECONDS*4*sample_rate + (enc_chunk_size-1)) / enc_chunk_size; logf("low wmk: %d", low_watermark); #ifdef HAVE_PRIORITY_SCHEDULING /* panic boost thread priority if 2 seconds of ground is lost - this allows encoder to boost with just under a second of pcm data (if not yet full enough to boost itself) and not falsely trip the alarm. */ flood_watermark = enc_num_chunks - (PANIC_SECONDS*4*sample_rate + (enc_chunk_size-1)) / enc_chunk_size; if (flood_watermark < low_watermark) { logf("warning: panic < low"); flood_watermark = low_watermark; } logf("flood at: %d", flood_watermark); #endif spinup_time = last_storage_spinup_time = storage_spinup_time(); /* write at 8s + st remaining in enc_buffer - range 12s to 20s total - default to 3.5s spinup. */ if (spinup_time == 0) spinup_time = 35*HZ/10; /* default - cozy */ else if (spinup_time < 2*HZ) spinup_time = 2*HZ; /* ludicrous - ramdisk? */ else if (spinup_time > 10*HZ) spinup_time = 10*HZ; /* do you have a functioning HD? */ /* try to start writing with 10s remaining after disk spinup */ high_watermark = enc_num_chunks - ((FLUSH_SECONDS*HZ + spinup_time)*4*sample_rate + (enc_chunk_size-1)*HZ) / (enc_chunk_size*HZ); if (high_watermark < low_watermark) { high_watermark = low_watermark; low_watermark /= 2; logf("warning: low 'write at'"); } logf("write at: %d", high_watermark); } /* pcmrec_refresh_watermarks */ /** * Process the chunks * * This function is called when queue_get_w_tmo times out. * * Set flush_num to the number of files to flush to disk or to * a PCMREC_FLUSH_* constant. */ static void pcmrec_flush(unsigned flush_num) { #ifdef HAVE_PRIORITY_SCHEDULING static unsigned long last_flush_tick; /* tick when function returned */ unsigned long start_tick; /* When flush started */ unsigned long prio_tick; /* Timeout for auto boost */ int prio_pcmrec; /* Current thread priority for pcmrec */ int prio_codec; /* Current thread priority for codec */ #endif int num_ready; /* Number of chunks ready at start */ unsigned remaining; /* Number of file starts remaining */ unsigned chunks_flushed; /* Chunks flushed (for mini flush only) */ bool interruptable; /* Flush can be interupted */ num_ready = enc_wr_index - enc_rd_index; if (num_ready < 0) num_ready += enc_num_chunks; /* save interruptable flag and remove it to get the actual count */ interruptable = (flush_num & PCMREC_FLUSH_INTERRUPTABLE) != 0; flush_num &= ~PCMREC_FLUSH_INTERRUPTABLE; if (flush_num == 0) { if (!is_recording) return; if (storage_spinup_time() != last_storage_spinup_time) pcmrec_refresh_watermarks(); /* enough available? no? then leave */ if (num_ready < high_watermark) return; } /* endif (flush_num == 0) */ #ifdef HAVE_PRIORITY_SCHEDULING start_tick = current_tick; prio_tick = start_tick + PRIO_SECONDS*HZ + spinup_time; if (flush_num == 0 && TIME_BEFORE(current_tick, last_flush_tick + HZ/2)) { /* if we're getting called too much and this isn't forced, boost stat by expiring timeout in advance */ logf("too frequent flush"); prio_tick = current_tick - 1; } prio_pcmrec = -1; prio_codec = -1; /* GCC is too stoopid to figure out it doesn't need init */ #endif logf("writing:%d(%d):%s%s", num_ready, flush_num, interruptable ? "i" : "", flush_num == PCMREC_FLUSH_MINI ? "m" : ""); cpu_boost(true); remaining = flush_num; chunks_flushed = 0; while (num_ready > 0) { /* check current number of encoder chunks */ int num = enc_wr_index - enc_rd_index; if (num < 0) num += enc_num_chunks; if (num <= low_watermark && (flush_num == PCMREC_FLUSH_IF_HIGH || num <= 0)) { logf("low data: %d", num); break; /* data remaining is below threshold */ } if (interruptable && flush_interrupts > 0) { logf("int at: %d", num); break; /* interrupted */ } #ifdef HAVE_PRIORITY_SCHEDULING if (prio_pcmrec == -1 && (num >= flood_watermark || TIME_AFTER(current_tick, prio_tick))) { /* losing ground or holding without progress - boost priority until finished */ logf("pcmrec: boost (%s)", num >= flood_watermark ? "num" : "time"); prio_pcmrec = thread_set_priority(THREAD_ID_CURRENT, thread_get_priority(THREAD_ID_CURRENT) - 4); prio_codec = thread_set_priority(codec_thread_id, thread_get_priority(codec_thread_id) - 4); } #endif rec_fdata.chunk = GET_ENC_CHUNK(enc_rd_index); rec_fdata.new_enc_size = rec_fdata.chunk->enc_size; rec_fdata.new_num_pcm = rec_fdata.chunk->num_pcm; if (rec_fdata.chunk->flags & CHUNKF_START_FILE) { pcmrec_start_file(); if (--remaining == 0) num_ready = 0; /* stop on next loop - must write this chunk if it has data */ } pcmrec_write_chunk(); if (rec_fdata.chunk->flags & CHUNKF_END_FILE) pcmrec_end_file(); INC_ENC_INDEX(enc_rd_index); if (errors != 0) { pcmrec_end_file(); break; } if (flush_num == PCMREC_FLUSH_MINI && ++chunks_flushed >= MINI_CHUNKS) { logf("mini flush break"); break; } /* no yielding; the file apis called in the codecs do that sufficiently */ } /* end while */ /* sync file */ if (rec_fdata.rec_file >= 0 && fsync(rec_fdata.rec_file) != 0) errors |= PCMREC_E_IO; cpu_boost(false); #ifdef HAVE_PRIORITY_SCHEDULING if (prio_pcmrec != -1) { /* return to original priorities */ logf("pcmrec: unboost priority"); thread_set_priority(THREAD_ID_CURRENT, prio_pcmrec); thread_set_priority(codec_thread_id, prio_codec); } last_flush_tick = current_tick; /* save tick when we left */ #endif logf("done"); } /* pcmrec_flush */ /** * Marks a new stream in the buffer and gives the encoder a chance for special * handling of transition from one to the next. The encoder may change the * chunk that ends the old stream by requesting more chunks and similiarly for * the new but must always advance the position though the interface. It can * later reject any data it cares to when writing the file but should mark the * chunk so it can recognize this. ENC_WRITE_CHUNK event must be able to accept * a NULL data pointer without error as well. */ static int pcmrec_get_chunk_index(struct enc_chunk_hdr *chunk) { return ((char *)chunk - (char *)enc_buffer) / enc_chunk_size; } /* pcmrec_get_chunk_index */ static struct enc_chunk_hdr * pcmrec_get_prev_chunk(int index) { DEC_ENC_INDEX(index); return GET_ENC_CHUNK(index); } /* pcmrec_get_prev_chunk */ static void pcmrec_new_stream(const char *filename, /* next file name */ unsigned long flags, /* CHUNKF_* flags */ int pre_index) /* index for prerecorded data */ { logf("pcmrec_new_stream"); char path[MAX_PATH]; /* place to copy filename so sender can be released */ struct enc_buffer_event_data data; bool (*fnq_add_fn)(const char *) = NULL; /* function to use to add new filename */ struct enc_chunk_hdr *start = NULL; /* pointer to starting chunk of stream */ bool did_flush = false; /* did a flush occurr? */ if (filename) strncpy(path, filename, MAX_PATH); queue_reply(&pcmrec_queue, 0); /* We have all we need */ data.pre_chunk = NULL; data.chunk = GET_ENC_CHUNK(enc_wr_index); /* end chunk */ if (flags & CHUNKF_END_FILE) { data.chunk->flags &= CHUNKF_START_FILE | CHUNKF_END_FILE; if (data.chunk->flags & CHUNKF_START_FILE) { /* cannot start and end on same unprocessed chunk */ logf("file end on start"); flags &= ~CHUNKF_END_FILE; } else if (enc_rd_index == enc_wr_index) { /* all data flushed but file not ended - chunk will be left empty */ logf("end on dead end"); data.chunk->flags = 0; data.chunk->enc_size = 0; data.chunk->num_pcm = 0; data.chunk->enc_data = NULL; INC_ENC_INDEX(enc_wr_index); data.chunk = GET_ENC_CHUNK(enc_wr_index); } else { struct enc_chunk_hdr *last = pcmrec_get_prev_chunk(enc_wr_index); if (last->flags & CHUNKF_END_FILE) { /* end already processed and marked - can't end twice */ logf("file end again"); flags &= ~CHUNKF_END_FILE; } } } /* start chunk */ if (flags & CHUNKF_START_FILE) { bool pre = flags & CHUNKF_PRERECORD; if (pre) { logf("stream prerecord start"); start = data.pre_chunk = GET_ENC_CHUNK(pre_index); start->flags &= CHUNKF_START_FILE | CHUNKF_PRERECORD; } else { logf("stream normal start"); start = data.chunk; start->flags &= CHUNKF_START_FILE; } /* if encoder hasn't yet processed the last start - abort the start of the previous file queued or else it will be empty and invalid */ if (start->flags & CHUNKF_START_FILE) { logf("replacing fnq tail: %s", filename); fnq_add_fn = pcmrec_fnq_replace_tail; } else { logf("adding filename: %s", filename); fnq_add_fn = pcmrec_fnq_add_filename; } } data.flags = flags; pcmrec_context = true; /* switch encoder context */ enc_events_callback(ENC_REC_NEW_STREAM, &data); pcmrec_context = false; /* switch back */ if (flags & CHUNKF_END_FILE) { int i = pcmrec_get_chunk_index(data.chunk); pcmrec_get_prev_chunk(i)->flags |= CHUNKF_END_FILE; } if (start) { if (!(flags & CHUNKF_PRERECORD)) { /* get stats on data added to start - sort of a prerecord operation */ int i = pcmrec_get_chunk_index(data.chunk); struct enc_chunk_hdr *chunk = data.chunk; logf("start data: %d %d", i, enc_wr_index); num_rec_bytes = 0; num_rec_samples = 0; while (i != enc_wr_index) { num_rec_bytes += chunk->enc_size; num_rec_samples += chunk->num_pcm; INC_ENC_INDEX(i); chunk = GET_ENC_CHUNK(i); } start->flags &= ~CHUNKF_START_FILE; start = data.chunk; } start->flags |= CHUNKF_START_FILE; /* flush all pending files out if full and adding */ if (fnq_add_fn == pcmrec_fnq_add_filename && pcmrec_fnq_is_full()) { logf("fnq full"); pcmrec_flush(PCMREC_FLUSH_ALL); did_flush = true; } fnq_add_fn(path); } /* Make sure to complete any interrupted high watermark */ if (!did_flush) pcmrec_flush(PCMREC_FLUSH_IF_HIGH); } /* pcmrec_new_stream */ /** event handlers for pcmrec thread */ /* PCMREC_INIT */ static void pcmrec_init(void) { unsigned char *buffer; /* warings and errors */ warnings = errors = 0; pcmrec_close_file(&rec_fdata.rec_file); rec_fdata.rec_file = -1; /* pcm FIFO */ dma_lock = true; pcm_rd_pos = 0; dma_wr_pos = 0; pcm_enc_pos = 0; /* encoder FIFO */ enc_wr_index = 0; enc_rd_index = 0; /* filename queue */ fnq_rd_pos = 0; fnq_wr_pos = 0; /* stats */ num_rec_bytes = 0; num_rec_samples = 0; #if 0 accum_rec_bytes = 0; accum_pcm_samples = 0; #endif pre_record_ticks = 0; is_recording = false; is_paused = false; buffer = audio_get_recording_buffer(&rec_buffer_size); /* Line align pcm_buffer 2^5=32 bytes */ pcm_buffer = (unsigned char *)ALIGN_UP_P2((uintptr_t)buffer, 5); enc_buffer = pcm_buffer + ALIGN_UP_P2(PCM_NUM_CHUNKS*PCM_CHUNK_SIZE + PCM_MAX_FEED_SIZE, 2); /* Adjust available buffer for possible align advancement */ rec_buffer_size -= pcm_buffer - buffer; pcm_init_recording(); } /* pcmrec_init */ /* PCMREC_CLOSE */ static void pcmrec_close(void) { dma_lock = true; pre_record_ticks = 0; /* Can't be prerecording any more */ warnings = 0; pcm_close_recording(); reset_hardware(); audio_remove_encoder(); } /* pcmrec_close */ /* PCMREC_OPTIONS */ static void pcmrec_set_recording_options( struct audio_recording_options *options) { /* stop DMA transfer */ dma_lock = true; pcm_stop_recording(); rec_frequency = options->rec_frequency; rec_source = options->rec_source; num_channels = options->rec_channels == 1 ? 1 : 2; rec_mono_mode = options->rec_mono_mode; pre_record_ticks = options->rec_prerecord_time * HZ; enc_config = options->enc_config; enc_config.afmt = rec_format_afmt[enc_config.rec_format]; #ifdef HAVE_SPDIF_IN if (rec_source == AUDIO_SRC_SPDIF) { /* must measure SPDIF sample rate before configuring codecs */ unsigned long sr = spdif_measure_frequency(); /* round to master list for SPDIF rate */ int index = round_value_to_list32(sr, audio_master_sampr_list, SAMPR_NUM_FREQ, false); sample_rate = audio_master_sampr_list[index]; /* round to HW playback rates for monitoring */ index = round_value_to_list32(sr, hw_freq_sampr, HW_NUM_FREQ, false); pcm_set_frequency(hw_freq_sampr[index]); /* encoders with a limited number of rates do their own rounding */ } else #endif { /* set sample rate from frequency selection */ sample_rate = rec_freq_sampr[rec_frequency]; pcm_set_frequency(sample_rate); } /* set monitoring */ audio_set_output_source(rec_source); /* apply hardware setting to start monitoring now */ pcm_apply_settings(); queue_reply(&pcmrec_queue, 0); /* Release sender */ if (audio_load_encoder(enc_config.afmt)) { /* start DMA transfer */ dma_lock = pre_record_ticks == 0; pcm_record_data(pcm_rec_have_more, GET_PCM_CHUNK(dma_wr_pos), PCM_CHUNK_SIZE); } else { logf("set rec opt: enc load failed"); errors |= PCMREC_E_LOAD_ENCODER; } } /* pcmrec_set_recording_options */ /* PCMREC_RECORD - start recording (not gapless) or split stream (gapless) */ static void pcmrec_record(const char *filename) { unsigned long pre_sample_ticks; int rd_start; unsigned long flags; int pre_index; logf("pcmrec_record: %s", filename); /* reset stats */ num_rec_bytes = 0; num_rec_samples = 0; if (!is_recording) { #if 0 accum_rec_bytes = 0; accum_pcm_samples = 0; #endif warnings = 0; /* reset warnings */ rd_start = enc_wr_index; pre_sample_ticks = 0; pcmrec_refresh_watermarks(); if (pre_record_ticks) { int i = rd_start; /* calculate number of available chunks */ unsigned long avail_pre_chunks = (enc_wr_index - enc_rd_index + enc_num_chunks) % enc_num_chunks; /* overflow at 974 seconds of prerecording at 44.1kHz */ unsigned long pre_record_sample_ticks = enc_sample_rate*pre_record_ticks; int pre_chunks = 0; /* Counter to limit prerecorded time to prevent flood state at outset */ logf("pre-st: %ld", pre_record_sample_ticks); /* Get exact measure of recorded data as number of samples aren't nescessarily going to be the max for each chunk */ for (; avail_pre_chunks-- > 0;) { struct enc_chunk_hdr *chunk; unsigned long chunk_sample_ticks; DEC_ENC_INDEX(i); chunk = GET_ENC_CHUNK(i); /* must have data to be counted */ if (chunk->enc_data == NULL) continue; chunk_sample_ticks = chunk->num_pcm*HZ; rd_start = i; pre_sample_ticks += chunk_sample_ticks; num_rec_bytes += chunk->enc_size; num_rec_samples += chunk->num_pcm; pre_chunks++; /* stop here if enough already */ if (pre_chunks >= high_watermark || pre_sample_ticks >= pre_record_sample_ticks) { logf("pre-chks: %d", pre_chunks); break; } } #if 0 accum_rec_bytes = num_rec_bytes; accum_pcm_samples = num_rec_samples; #endif } enc_rd_index = rd_start; /* filename queue should be empty */ if (!pcmrec_fnq_is_empty()) { logf("fnq: not empty!"); pcmrec_fnq_set_empty(); } flags = CHUNKF_START_FILE; if (pre_sample_ticks > 0) flags |= CHUNKF_PRERECORD; pre_index = enc_rd_index; dma_lock = false; is_paused = false; is_recording = true; } else { /* already recording, just split the stream */ logf("inserting split"); flags = CHUNKF_START_FILE | CHUNKF_END_FILE; pre_index = 0; } pcmrec_new_stream(filename, flags, pre_index); logf("pcmrec_record done"); } /* pcmrec_record */ /* PCMREC_STOP */ static void pcmrec_stop(void) { logf("pcmrec_stop"); if (is_recording) { dma_lock = true; /* lock dma write position */ /* flush all available data first to avoid overflow while waiting for encoding to finish */ pcmrec_flush(PCMREC_FLUSH_ALL); /* wait for encoder to finish remaining data */ while (errors == 0 && !pcm_buffer_empty) yield(); /* end stream at last data */ pcmrec_new_stream(NULL, CHUNKF_END_FILE, 0); /* flush anything else encoder added */ pcmrec_flush(PCMREC_FLUSH_ALL); /* remove any pending file start not yet processed - should be at most one at enc_wr_index */ pcmrec_fnq_get_filename(NULL); /* encoder should abort any chunk it was in midst of processing */ GET_ENC_CHUNK(enc_wr_index)->flags = CHUNKF_ABORT; /* filename queue should be empty */ if (!pcmrec_fnq_is_empty()) { logf("fnq: not empty!"); pcmrec_fnq_set_empty(); } /* be absolutely sure the file is closed */ if (errors != 0) pcmrec_close_file(&rec_fdata.rec_file); rec_fdata.rec_file = -1; is_recording = false; is_paused = false; dma_lock = pre_record_ticks == 0; } else { logf("not recording"); } logf("pcmrec_stop done"); } /* pcmrec_stop */ /* PCMREC_PAUSE */ static void pcmrec_pause(void) { logf("pcmrec_pause"); if (!is_recording) { logf("not recording"); } else if (is_paused) { logf("already paused"); } else { dma_lock = true; is_paused = true; } logf("pcmrec_pause done"); } /* pcmrec_pause */ /* PCMREC_RESUME */ static void pcmrec_resume(void) { logf("pcmrec_resume"); if (!is_recording) { logf("not recording"); } else if (!is_paused) { logf("not paused"); } else { is_paused = false; is_recording = true; dma_lock = false; } logf("pcmrec_resume done"); } /* pcmrec_resume */ static void pcmrec_thread(void) __attribute__((noreturn)); static void pcmrec_thread(void) { struct queue_event ev; logf("thread pcmrec start"); while(1) { if (is_recording) { /* Poll periodically to flush data */ queue_wait_w_tmo(&pcmrec_queue, &ev, HZ/5); if (ev.id == SYS_TIMEOUT) { /* Messages that interrupt this will complete it */ pcmrec_flush(PCMREC_FLUSH_IF_HIGH | PCMREC_FLUSH_INTERRUPTABLE); continue; } } else { /* Not doing anything - sit and wait for commands */ queue_wait(&pcmrec_queue, &ev); } switch (ev.id) { case PCMREC_INIT: pcmrec_init(); break; case PCMREC_CLOSE: pcmrec_close(); break; case PCMREC_OPTIONS: pcmrec_set_recording_options( (struct audio_recording_options *)ev.data); break; case PCMREC_RECORD: clear_flush_interrupt(); pcmrec_record((const char *)ev.data); break; case PCMREC_STOP: clear_flush_interrupt(); pcmrec_stop(); break; case PCMREC_PAUSE: clear_flush_interrupt(); pcmrec_pause(); break; case PCMREC_RESUME: pcmrec_resume(); break; #if 0 case PCMREC_FLUSH_NUM: pcmrec_flush((unsigned)ev.data); break; #endif case SYS_USB_CONNECTED: if (is_recording) break; pcmrec_close(); usb_acknowledge(SYS_USB_CONNECTED_ACK); usb_wait_for_disconnect(&pcmrec_queue); flush_interrupts = 0; break; } /* end switch */ } /* end while */ } /* pcmrec_thread */ /****************************************************************************/ /* */ /* following functions will be called by the encoder codec */ /* in a free-threaded manner */ /* */ /****************************************************************************/ /* pass the encoder settings to the encoder */ void enc_get_inputs(struct enc_inputs *inputs) { inputs->sample_rate = sample_rate; inputs->num_channels = num_channels; inputs->rec_mono_mode = rec_mono_mode; inputs->config = &enc_config; } /* enc_get_inputs */ /* set the encoder dimensions (called by encoder codec at initialization and termination) */ void enc_set_parameters(struct enc_parameters *params) { size_t bufsize, resbytes; logf("enc_set_parameters"); if (!params) { logf("reset"); /* Encoder is terminating */ memset(&enc_config, 0, sizeof (enc_config)); enc_sample_rate = 0; cancel_cpu_boost(); /* Make sure no boost remains */ return; } enc_sample_rate = params->enc_sample_rate; logf("enc sampr:%lu", enc_sample_rate); pcm_rd_pos = dma_wr_pos; pcm_enc_pos = pcm_rd_pos; enc_config.afmt = params->afmt; /* addition of the header is always implied - chunk size 4-byte aligned */ enc_chunk_size = ALIGN_UP_P2(ENC_CHUNK_HDR_SIZE + params->chunk_size, 2); enc_events_callback = params->events_callback; logf("chunk size:%lu", enc_chunk_size); /*** Configure the buffers ***/ /* Layout of recording buffer: * [ax] = possible alignment x multiple * [sx] = possible size alignment of x multiple * |[a16]|[s4]:PCM Buffer+PCM Guard|[s4 each]:Encoder Chunks|-> * |[[s4]:Reserved Bytes]|Filename Queue->|[space]| */ resbytes = ALIGN_UP_P2(params->reserve_bytes, 2); logf("resbytes:%lu", resbytes); bufsize = rec_buffer_size - (enc_buffer - pcm_buffer) - resbytes - FNQ_MIN_NUM_PATHS*MAX_PATH #ifdef DEBUG - sizeof (*wrap_id_p) #endif ; enc_num_chunks = bufsize / enc_chunk_size; logf("num chunks:%d", enc_num_chunks); /* get real amount used by encoder chunks */ bufsize = enc_num_chunks*enc_chunk_size; logf("enc size:%lu", bufsize); #ifdef DEBUG /* add magic at wraparound for spillover checks */ wrap_id_p = SKIPBYTES((unsigned long *)enc_buffer, bufsize); bufsize += sizeof (*wrap_id_p); *wrap_id_p = ENC_CHUNK_MAGIC; #endif /** set OUT parameters **/ params->enc_buffer = enc_buffer; params->buf_chunk_size = enc_chunk_size; params->num_chunks = enc_num_chunks; /* calculate reserve buffer start and return pointer to encoder */ params->reserve_buffer = NULL; if (resbytes > 0) { params->reserve_buffer = enc_buffer + bufsize; bufsize += resbytes; } /* place filename queue at end of buffer using up whatever remains */ fnq_rd_pos = 0; /* reset */ fnq_wr_pos = 0; /* reset */ fn_queue = enc_buffer + bufsize; fnq_size = pcm_buffer + rec_buffer_size - fn_queue; fnq_size /= MAX_PATH; if (fnq_size > FNQ_MAX_NUM_PATHS) fnq_size = FNQ_MAX_NUM_PATHS; fnq_size *= MAX_PATH; logf("fnq files:%ld", fnq_size / MAX_PATH); #if defined(DEBUG) logf("ab :%08lX", (uintptr_t)audiobuf); logf("pcm:%08lX", (uintptr_t)pcm_buffer); logf("enc:%08lX", (uintptr_t)enc_buffer); logf("res:%08lX", (uintptr_t)params->reserve_buffer); logf("wip:%08lX", (uintptr_t)wrap_id_p); logf("fnq:%08lX", (uintptr_t)fn_queue); logf("end:%08lX", (uintptr_t)fn_queue + fnq_size); logf("abe:%08lX", (uintptr_t)audiobufend); #endif /* init all chunk headers and reset indexes */ enc_rd_index = 0; for (enc_wr_index = enc_num_chunks; enc_wr_index > 0; ) { struct enc_chunk_hdr *chunk = GET_ENC_CHUNK(--enc_wr_index); #ifdef DEBUG chunk->id = ENC_CHUNK_MAGIC; #endif chunk->flags = 0; } logf("enc_set_parameters done"); } /* enc_set_parameters */ /* return encoder chunk at current write position - NOTE: can be called by pcmrec thread when splitting streams */ struct enc_chunk_hdr * enc_get_chunk(void) { struct enc_chunk_hdr *chunk = GET_ENC_CHUNK(enc_wr_index); #ifdef DEBUG if (chunk->id != ENC_CHUNK_MAGIC || *wrap_id_p != ENC_CHUNK_MAGIC) { errors |= PCMREC_E_CHUNK_OVF; logf("finish chk ovf: %d", enc_wr_index); } #endif chunk->flags &= CHUNKF_START_FILE; if (!is_recording) chunk->flags |= CHUNKF_PRERECORD; return chunk; } /* enc_get_chunk */ /* releases the current chunk into the available chunks - NOTE: can be called by pcmrec thread when splitting streams */ void enc_finish_chunk(void) { struct enc_chunk_hdr *chunk = GET_ENC_CHUNK(enc_wr_index); if ((long)chunk->flags < 0) { /* encoder set error flag */ errors |= PCMREC_E_ENCODER; logf("finish chk enc error"); } /* advance enc_wr_index to the next encoder chunk */ INC_ENC_INDEX(enc_wr_index); if (enc_rd_index != enc_wr_index) { num_rec_bytes += chunk->enc_size; num_rec_samples += chunk->num_pcm; #if 0 accum_rec_bytes += chunk->enc_size; accum_pcm_samples += chunk->num_pcm; #endif } else if (is_recording) /* buffer full */ { /* keep current position and put up warning flag */ warnings |= PCMREC_W_ENC_BUFFER_OVF; logf("enc_buffer ovf"); DEC_ENC_INDEX(enc_wr_index); if (pcmrec_context) { /* if stream splitting, keep this out of circulation and flush a small number, then readd - cannot risk losing stream markers */ logf("mini flush"); pcmrec_flush(PCMREC_FLUSH_MINI); INC_ENC_INDEX(enc_wr_index); } } else { /* advance enc_rd_index for prerecording */ INC_ENC_INDEX(enc_rd_index); } } /* enc_finish_chunk */ /* passes a pointer to next chunk of unprocessed wav data */ /* TODO: this really should give the actual size returned */ unsigned char * enc_get_pcm_data(size_t size) { int wp = dma_wr_pos; size_t avail = (wp - pcm_rd_pos) & PCM_CHUNK_MASK; /* limit the requested pcm data size */ if (size > PCM_MAX_FEED_SIZE) size = PCM_MAX_FEED_SIZE; if (avail >= size) { unsigned char *ptr = pcm_buffer + pcm_rd_pos; int next_pos = (pcm_rd_pos + size) & PCM_CHUNK_MASK; pcm_enc_pos = pcm_rd_pos; pcm_rd_pos = next_pos; /* ptr must point to continous data at wraparound position */ if ((size_t)pcm_rd_pos < size) { memcpy(pcm_buffer + PCM_NUM_CHUNKS*PCM_CHUNK_SIZE, pcm_buffer, pcm_rd_pos); } if (avail >= (sample_rate << 2)) { /* Filling up - boost codec */ trigger_cpu_boost(); } pcm_buffer_empty = false; return ptr; } /* not enough data available - encoder should idle */ pcm_buffer_empty = true; cancel_cpu_boost(); /* Sleep long enough to allow one frame on average */ sleep(0); return NULL; } /* enc_get_pcm_data */ /* puts some pcm data back in the queue */ size_t enc_unget_pcm_data(size_t size) { int wp = dma_wr_pos; size_t old_avail = ((pcm_rd_pos - wp) & PCM_CHUNK_MASK) - 2*PCM_CHUNK_SIZE; /* allow one interrupt to occur during this call and not have the new read position inside the DMA destination chunk */ if ((ssize_t)old_avail > 0) { /* limit size to amount of old data remaining */ if (size > old_avail) size = old_avail; pcm_enc_pos = (pcm_rd_pos - size) & PCM_CHUNK_MASK; pcm_rd_pos = pcm_enc_pos; return size; } return 0; } /* enc_unget_pcm_data */