/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Richard S. La Charité III * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "kernel.h" #include "lcd-remote.h" /*** definitions ***/ #define LCD_REMOTE_CNTL_ADC_NORMAL 0xa0 #define LCD_REMOTE_CNTL_ADC_REVERSE 0xa1 #define LCD_REMOTE_CNTL_SHL_NORMAL 0xc0 #define LCD_REMOTE_CNTL_SHL_REVERSE 0xc8 #define LCD_REMOTE_CNTL_DISPLAY_ON_OFF 0xae #define LCD_REMOTE_CNTL_ENTIRE_ON_OFF 0xa4 #define LCD_REMOTE_CNTL_REVERSE_ON_OFF 0xa6 #define LCD_REMOTE_CNTL_NOP 0xe3 #define LCD_REMOTE_CNTL_POWER_CONTROL 0x2b #define LCD_REMOTE_CNTL_SELECT_REGULATOR 0x20 #define LCD_REMOTE_CNTL_SELECT_BIAS 0xa2 #define LCD_REMOTE_CNTL_SELECT_VOLTAGE 0x81 #define LCD_REMOTE_CNTL_INIT_LINE 0x40 #define LCD_REMOTE_CNTL_SET_PAGE_ADDRESS 0xB0 #define LCD_REMOTE_CNTL_HIGHCOL 0x10 /* Upper column address */ #define LCD_REMOTE_CNTL_LOWCOL 0x00 /* Lower column address */ #define CS_LO and_l(~0x00000004, &GPIO1_OUT) #define CS_HI or_l(0x00000004, &GPIO1_OUT) #define CLK_LO and_l(~0x10000000, &GPIO_OUT) #define CLK_HI or_l(0x10000000, &GPIO_OUT) #define DATA_LO and_l(~0x00040000, &GPIO1_OUT) #define DATA_HI or_l(0x00040000, &GPIO1_OUT) #define RS_LO and_l(~0x00010000, &GPIO_OUT) #define RS_HI or_l(0x00010000, &GPIO_OUT) static int xoffset; /* needed for flip */ /* timeout counter for deasserting /CS after access, <0 means not counting */ static int cs_countdown IDATA_ATTR = 0; #define CS_TIMEOUT (HZ/10) #ifdef HAVE_REMOTE_LCD_TICKING /* If set to true, will prevent "ticking" to headphones. */ static bool emireduce = false; static int byte_delay = 0; #endif bool remote_initialized = false; static int _remote_type = REMOTETYPE_UNPLUGGED; /* cached settings values */ static bool cached_invert = false; static bool cached_flip = false; static int cached_contrast = DEFAULT_REMOTE_CONTRAST_SETTING; static void remote_tick(void); #ifdef HAVE_REMOTE_LCD_TICKING static inline void _byte_delay(int delay) { asm ( "move.l %[dly], %%d0 \n" "ble.s 2f \n" "1: \n" "subq.l #1, %%d0 \n" "bne.s 1b \n" "2: \n" : /* outputs */ : /* inputs */ [dly]"d"(delay) : /* clobbers */ "d0" ); } #endif /* HAVE_REMOTE_LCD_TICKING */ /* Standard low-level byte writer. Requires CLK low on entry */ static inline void _write_byte(unsigned data) { asm volatile ( "move.l (%[gpo1]), %%d0 \n" /* Get current state of data line */ "and.l %[dbit], %%d0 \n" "beq.s 1f \n" /* and set it as previous-state bit */ "bset #8, %[data] \n" "1: \n" "move.l %[data], %%d0 \n" /* Compute the 'bit derivative', i.e. a value */ "lsr.l #1, %%d0 \n" /* with 1's where the data changes from the */ "eor.l %%d0, %[data] \n" /* previous state, and 0's where it doesn't */ "swap %[data] \n" /* Shift data to upper byte */ "lsl.l #8, %[data] \n" "lsl.l #1,%[data] \n" /* Shift out MSB */ "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" /* 1: flip DATA */ "1: \n" "eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */ "eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */ "lsl.l #1,%[data] \n" /* ..unrolled.. */ "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], (%[gpo1]) \n" "1: \n" "eor.l %[cbit], (%[gpo0]) \n" "eor.l %[cbit], (%[gpo0]) \n" : /* outputs */ [data]"+d"(data) : /* inputs */ [gpo0]"a"(&GPIO_OUT), [cbit]"d"(0x10000000), [gpo1]"a"(&GPIO1_OUT), [dbit]"d"(0x00040000) : /* clobbers */ "d0" ); } /* Fast low-level byte writer. Don't use with high CPU clock. * Requires CLK low on entry */ static inline void _write_fast(unsigned data) { asm volatile ( "move.w %%sr,%%d3 \n" /* Get current interrupt level */ "move.w #0x2700,%%sr \n" /* Disable interrupts */ "move.l (%[gpo1]), %%d0 \n" /* Get current state of data port */ "move.l %%d0, %%d1 \n" "and.l %[dbit], %%d1 \n" /* Check current state of data line */ "beq.s 1f \n" /* and set it as previous-state bit */ "bset #8, %[data] \n" "1: \n" "move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */ "lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */ "eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */ "swap %[data] \n" /* Shift data to upper byte */ "lsl.l #8, %[data] \n" "move.l (%[gpo0]), %%d1 \n" /* Get current state of clock port */ "move.l %[cbit], %%d2 \n" /* Precalculate opposite state of clock line */ "eor.l %%d1, %%d2 \n" "lsl.l #1,%[data] \n" /* Shift out MSB */ "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" /* 1: flip data bit */ "move.l %%d0, (%[gpo1]) \n" /* and output new DATA state */ "1: \n" "move.l %%d2, (%[gpo0]) \n" /* Set CLK */ "move.l %%d1, (%[gpo0]) \n" /* Reset CLK */ "lsl.l #1,%[data] \n" /* ..unrolled.. */ "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "lsl.l #1,%[data] \n" "bcc.s 1f \n" "eor.l %[dbit], %%d0 \n" "move.l %%d0, (%[gpo1]) \n" "1: \n" "move.l %%d2, (%[gpo0]) \n" "move.l %%d1, (%[gpo0]) \n" "move.w %%d3, %%sr \n" /* Restore interrupt level */ : /* outputs */ [data]"+d"(data) : /* inputs */ [gpo0]"a"(&GPIO_OUT), [cbit]"i"(0x10000000), [gpo1]"a"(&GPIO1_OUT), [dbit]"d"(0x00040000) : /* clobbers */ "d0", "d1", "d2", "d3" ); } void lcd_remote_write_command(int cmd) { cs_countdown = 0; RS_LO; CS_LO; _write_byte(cmd); #ifdef HAVE_REMOTE_LCD_TICKING _byte_delay(byte_delay - 148); #endif cs_countdown = CS_TIMEOUT; } void lcd_remote_write_command_ex(int cmd, int data) { cs_countdown = 0; RS_LO; CS_LO; _write_byte(cmd); #ifdef HAVE_REMOTE_LCD_TICKING _byte_delay(byte_delay - 148); #endif _write_byte(data); #ifdef HAVE_REMOTE_LCD_TICKING _byte_delay(byte_delay - 148); #endif cs_countdown = CS_TIMEOUT; } void lcd_remote_write_data(const unsigned char* p_bytes, int count) ICODE_ATTR; void lcd_remote_write_data(const unsigned char* p_bytes, int count) { const unsigned char *p_end = p_bytes + count; cs_countdown = 0; RS_HI; CS_LO; /* This is safe as long as lcd_remote_write_data() isn't called from within * an ISR. */ if (cpu_frequency < 50000000) { while (p_bytes < p_end) { _write_fast(*p_bytes++); #ifdef HAVE_REMOTE_LCD_TICKING _byte_delay(byte_delay - 87); #endif } } else { while (p_bytes < p_end) { _write_byte(*p_bytes++); #ifdef HAVE_REMOTE_LCD_TICKING _byte_delay(byte_delay - 148); #endif } } cs_countdown = CS_TIMEOUT; } /*** hardware configuration ***/ int lcd_remote_default_contrast(void) { return DEFAULT_REMOTE_CONTRAST_SETTING; } #ifdef HAVE_REMOTE_LCD_TICKING void lcd_remote_emireduce(bool state) { emireduce = state; } #endif void lcd_remote_powersave(bool on) { if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | (on ? 0 : 1)); lcd_remote_write_command(LCD_REMOTE_CNTL_ENTIRE_ON_OFF | (on ? 1 : 0)); } } void lcd_remote_set_contrast(int val) { cached_contrast = val; if (remote_initialized) lcd_remote_write_command_ex(LCD_REMOTE_CNTL_SELECT_VOLTAGE, val); } void lcd_remote_set_invert_display(bool yesno) { cached_invert = yesno; if (remote_initialized) lcd_remote_write_command(LCD_REMOTE_CNTL_REVERSE_ON_OFF | (yesno?1:0)); } /* turn the display upside down (call lcd_remote_update() afterwards) */ void lcd_remote_set_flip(bool yesno) { cached_flip = yesno; if (yesno) { xoffset = 0; if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_NORMAL); lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_NORMAL); } } else { xoffset = 132 - LCD_REMOTE_WIDTH; if (remote_initialized) { lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_REVERSE); lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_REVERSE); } } } bool remote_detect(void) { return (GPIO_READ & 0x40000000)?false:true; } int remote_type(void) { return _remote_type; } void lcd_remote_init_device(void) { #ifdef IRIVER_H300_SERIES or_l(0x10010000, &GPIO_FUNCTION); /* GPIO16: RS GPIO28: CLK */ or_l(0x00040006, &GPIO1_FUNCTION); /* GPO33: Backlight GPIO34: CS GPIO50: Data */ or_l(0x10010000, &GPIO_ENABLE); or_l(0x00040006, &GPIO1_ENABLE); #else or_l(0x10010800, &GPIO_FUNCTION); /* GPIO11: Backlight GPIO16: RS GPIO28: CLK */ or_l(0x00040004, &GPIO1_FUNCTION); /* GPIO34: CS GPIO50: Data */ or_l(0x10010800, &GPIO_ENABLE); or_l(0x00040004, &GPIO1_ENABLE); #endif lcd_remote_clear_display(); tick_add_task(remote_tick); } void lcd_remote_on(void) { CS_HI; CLK_LO; lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_BIAS | 0x0); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x5); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x6); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x7); lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_REGULATOR | 0x4); // 0x4 Select regulator @ 5.0 (default); sleep(1); lcd_remote_write_command(LCD_REMOTE_CNTL_INIT_LINE | 0x0); // init line lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | 0x0); // page address lcd_remote_write_command_ex(0x10, 0x00); // Column MSB + LSB lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | 1); remote_initialized = true; lcd_remote_set_flip(cached_flip); lcd_remote_set_contrast(cached_contrast); lcd_remote_set_invert_display(cached_invert); } void lcd_remote_off(void) { remote_initialized = false; CLK_LO; CS_HI; } /* Monitor remote hotswap */ static void remote_tick(void) { static bool last_status = false; static int countdown = 0; static int init_delay = 0; bool current_status; int val; int level; current_status = remote_detect(); /* Only report when the status has changed */ if (current_status != last_status) { last_status = current_status; countdown = current_status ? 20*HZ : 1; } else { /* Count down until it gets negative */ if (countdown >= 0) countdown--; if (current_status) { if (!(countdown % 8)) { /* Determine which type of remote it is */ level = set_irq_level(HIGHEST_IRQ_LEVEL); val = adc_scan(ADC_REMOTEDETECT); set_irq_level(level); if (val < ADCVAL_H100_LCD_REMOTE_HOLD) { if (val < ADCVAL_H100_LCD_REMOTE) if (val < ADCVAL_H300_LCD_REMOTE) _remote_type = REMOTETYPE_H300_LCD; /* hold off */ else _remote_type = REMOTETYPE_H100_LCD; /* hold off */ else if (val < ADCVAL_H300_LCD_REMOTE_HOLD) _remote_type = REMOTETYPE_H300_LCD; /* hold on */ else _remote_type = REMOTETYPE_H100_LCD; /* hold on */ if (--init_delay <= 0) { queue_post(&remote_scroll_queue, REMOTE_INIT_LCD, 0); init_delay = 6; } } else { _remote_type = REMOTETYPE_H300_NONLCD; /* hold on or off */ } } } else { if (countdown == 0) { _remote_type = REMOTETYPE_UNPLUGGED; queue_post(&remote_scroll_queue, REMOTE_DEINIT_LCD, 0); } } } /* handle chip select timeout */ if (cs_countdown >= 0) cs_countdown--; if (cs_countdown == 0) CS_HI; } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_remote_update(void) ICODE_ATTR; void lcd_remote_update(void) { int y; if (!remote_initialized) return; #ifdef HAVE_REMOTE_LCD_TICKING /* Adjust byte delay for emi reduction. */ byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0; #endif /* Copy display bitmap to hardware */ for (y = 0; y < LCD_REMOTE_FBHEIGHT; y++) { lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y); lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | ((xoffset >> 4) & 0xf)); lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | (xoffset & 0xf)); lcd_remote_write_data(lcd_remote_framebuffer[y], LCD_REMOTE_WIDTH); } } /* Update a fraction of the display. */ void lcd_remote_update_rect(int, int, int, int) ICODE_ATTR; void lcd_remote_update_rect(int x, int y, int width, int height) { int ymax; if (!remote_initialized) return; /* The Y coordinates have to work on even 8 pixel rows */ ymax = (y + height-1) >> 3; y >>= 3; if(x + width > LCD_REMOTE_WIDTH) width = LCD_REMOTE_WIDTH - x; if (width <= 0) return; /* nothing left to do, 0 is harmful to lcd_write_data() */ if(ymax >= LCD_REMOTE_FBHEIGHT) ymax = LCD_REMOTE_FBHEIGHT-1; #ifdef HAVE_REMOTE_LCD_TICKING /* Adjust byte delay for emi reduction */ byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0; #endif /* Copy specified rectange bitmap to hardware */ for (; y <= ymax; y++) { lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y); lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | (((x+xoffset) >> 4) & 0xf)); lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | ((x+xoffset) & 0xf)); lcd_remote_write_data(&lcd_remote_framebuffer[y][x], width); } }