/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2007 Dave Chapman * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "thread.h" #include "disk.h" #include "storage.h" #include "timer.h" #include "kernel.h" #include "string.h" #include "power.h" #include "panic.h" #include "mmu-arm.h" #include "mmcdefs-target.h" #include "s5l8702.h" #include "led.h" #include "ata_idle_notify.h" #ifndef ATA_RETRIES #define ATA_RETRIES 3 #endif #define CEATA_POWERUP_TIMEOUT 20000000 #define CEATA_COMMAND_TIMEOUT 1000000 #define CEATA_DAT_NONBUSY_TIMEOUT 5000000 #define CEATA_MMC_RCA 1 /** static, private data **/ static uint8_t ceata_taskfile[16] __attribute__((aligned(16))); static uint16_t ata_identify_data[0x100] __attribute__((aligned(16))); static bool ceata; static bool ata_lba48; static bool ata_dma; static uint64_t ata_total_sectors; static struct mutex ata_mutex; static struct semaphore ata_wakeup; static uint32_t ata_dma_flags; static long ata_last_activity_value = -1; static long ata_sleep_timeout = 20 * HZ; static uint32_t ata_stack[(DEFAULT_STACK_SIZE + 0x400) / 4]; static bool ata_powered; static const int ata_retries = ATA_RETRIES; static const bool ata_error_srst = true; static struct semaphore mmc_wakeup; static struct semaphore mmc_comp_wakeup; static int spinup_time = 0; static int dma_mode = 0; #ifdef ATA_HAVE_BBT char ata_bbt_buf[ATA_BBT_PAGES * 64]; uint16_t (*ata_bbt)[0x20]; uint64_t ata_virtual_sectors; uint32_t ata_last_offset; uint64_t ata_last_phys; int ata_rw_sectors_internal(uint64_t sector, uint32_t count, void* buffer, bool write); int ata_bbt_read_sectors(uint32_t sector, uint32_t count, void* buffer) { if (ata_last_phys != sector - 1 && ata_last_phys > sector - 64) ata_soft_reset(); int rc = ata_rw_sectors_internal(sector, count, buffer, false); if (rc) rc = ata_rw_sectors_internal(sector, count, buffer, false); ata_last_phys = sector + count - 1; ata_last_offset = 0; if (IS_ERR(rc)) panicf("ATA: Error %08X while reading BBT (sector %d, count %d)\n", (unsigned int)rc, (unsigned int)sector, (unsigned int)count); return rc; } #endif static uint16_t ata_read_cbr(uint32_t volatile* reg) { while (!(ATA_PIO_READY & 2)); volatile uint32_t dummy __attribute__((unused)) = *reg; while (!(ATA_PIO_READY & 1)); return ATA_PIO_RDATA; } static void ata_write_cbr(uint32_t volatile* reg, uint16_t data) { while (!(ATA_PIO_READY & 2)); *reg = data; } static int ata_wait_for_not_bsy(long timeout) { long startusec = USEC_TIMER; while (true) { uint8_t csd = ata_read_cbr(&ATA_PIO_CSD); if (!(csd & BIT(7))) return 0; if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(0); } } static int ata_wait_for_rdy(long timeout) { long startusec = USEC_TIMER; PASS_RC(ata_wait_for_not_bsy(timeout), 1, 0); while (true) { uint8_t dad = ata_read_cbr(&ATA_PIO_DAD); if (dad & BIT(6)) return 0; if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(1); } } static int ata_wait_for_start_of_transfer(long timeout) { long startusec = USEC_TIMER; PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0); while (true) { uint8_t dad = ata_read_cbr(&ATA_PIO_DAD); if (dad & BIT(0)) RET_ERR(1); if ((dad & (BIT(7) | BIT(3))) == BIT(3)) return 0; if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(2); } } static int ata_wait_for_end_of_transfer(long timeout) { PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0); uint8_t dad = ata_read_cbr(&ATA_PIO_DAD); if (dad & BIT(0)) RET_ERR(1); if ((dad & (BIT(3) | BITRANGE(5, 7))) == BIT(6)) return 0; RET_ERR(2); } static int mmc_dsta_check_command_success(bool disable_crc) { int rc = 0; uint32_t dsta = SDCI_DSTA; if (dsta & SDCI_DSTA_RESTOUTE) rc |= 1; if (dsta & SDCI_DSTA_RESENDE) rc |= 2; if (dsta & SDCI_DSTA_RESINDE) rc |= 4; if (!disable_crc) if (dsta & SDCI_DSTA_RESCRCE) rc |= 8; if (rc) RET_ERR(rc); return 0; } static bool mmc_send_command(uint32_t cmd, uint32_t arg, uint32_t* result, int timeout) { long starttime = USEC_TIMER; while ((SDCI_STATE & SDCI_STATE_CMD_STATE_MASK) != SDCI_STATE_CMD_STATE_CMD_IDLE) { if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(0); yield(); } SDCI_STAC = SDCI_STAC_CLR_CMDEND | SDCI_STAC_CLR_BIT_3 | SDCI_STAC_CLR_RESEND | SDCI_STAC_CLR_DATEND | SDCI_STAC_CLR_DAT_CRCEND | SDCI_STAC_CLR_CRC_STAEND | SDCI_STAC_CLR_RESTOUTE | SDCI_STAC_CLR_RESENDE | SDCI_STAC_CLR_RESINDE | SDCI_STAC_CLR_RESCRCE | SDCI_STAC_CLR_WR_DATCRCE | SDCI_STAC_CLR_RD_DATCRCE | SDCI_STAC_CLR_RD_DATENDE0 | SDCI_STAC_CLR_RD_DATENDE1 | SDCI_STAC_CLR_RD_DATENDE2 | SDCI_STAC_CLR_RD_DATENDE3 | SDCI_STAC_CLR_RD_DATENDE4 | SDCI_STAC_CLR_RD_DATENDE5 | SDCI_STAC_CLR_RD_DATENDE6 | SDCI_STAC_CLR_RD_DATENDE7; SDCI_ARGU = arg; SDCI_CMD = cmd; if (!(SDCI_DSTA & SDCI_DSTA_CMDRDY)) RET_ERR(1); SDCI_CMD = cmd | SDCI_CMD_CMDSTR; long sleepbase = USEC_TIMER; while (TIMEOUT_EXPIRED(sleepbase, 1000)) yield(); while (!(SDCI_DSTA & SDCI_DSTA_CMDEND)) { if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(2); yield(); } if ((cmd & SDCI_CMD_RES_TYPE_MASK) != SDCI_CMD_RES_TYPE_NONE) { while (!(SDCI_DSTA & SDCI_DSTA_RESEND)) { if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(3); yield(); } if (cmd & SDCI_CMD_RES_BUSY) while (SDCI_DSTA & SDCI_DSTA_DAT_BUSY) { if (TIMEOUT_EXPIRED(starttime, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(4); yield(); } } bool nocrc = (cmd & SDCI_CMD_RES_SIZE_MASK) == SDCI_CMD_RES_SIZE_136; PASS_RC(mmc_dsta_check_command_success(nocrc), 3, 5); if (result) *result = SDCI_RESP0; return 0; } static int mmc_get_card_status(uint32_t* result) { return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_STATUS) | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_SEND_STATUS_RCA(CEATA_MMC_RCA), result, CEATA_COMMAND_TIMEOUT); } static int mmc_init(void) { sleep(HZ / 10); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_GO_IDLE_STATE) | SDCI_CMD_CMD_TYPE_BC | SDCI_CMD_RES_TYPE_NONE | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID, 0, NULL, CEATA_COMMAND_TIMEOUT), 3, 0); long startusec = USEC_TIMER; uint32_t result; do { if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(1); sleep(HZ / 100); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_OP_COND) | SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R3 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID, MMC_CMD_SEND_OP_COND_OCR(MMC_OCR_270_360), NULL, CEATA_COMMAND_TIMEOUT), 3, 2); result = SDCI_RESP0; } while (!(result & MMC_OCR_POWER_UP_DONE)); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_ALL_SEND_CID) | SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R2 | SDCI_CMD_RES_SIZE_136 | SDCI_CMD_NCR_NID_NID, 0, NULL, CEATA_COMMAND_TIMEOUT), 3, 3); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SET_RELATIVE_ADDR) | SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_SET_RELATIVE_ADDR_RCA(CEATA_MMC_RCA), NULL, CEATA_COMMAND_TIMEOUT), 3, 4); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SELECT_CARD) | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_SELECT_CARD_RCA(CEATA_MMC_RCA), NULL, CEATA_COMMAND_TIMEOUT), 3, 5); PASS_RC(mmc_get_card_status(&result), 3, 6); if ((result & MMC_STATUS_CURRENT_STATE_MASK) != MMC_STATUS_CURRENT_STATE_TRAN) RET_ERR(7); return 0; } static int mmc_fastio_write(uint32_t addr, uint32_t data) { return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO) | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_WRITE | MMC_CMD_FAST_IO_ADDRESS(addr) | MMC_CMD_FAST_IO_DATA(data), NULL, CEATA_COMMAND_TIMEOUT); } static int mmc_fastio_read(uint32_t addr, uint32_t* data) { return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO) | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_READ | MMC_CMD_FAST_IO_ADDRESS(addr), data, CEATA_COMMAND_TIMEOUT); } static int ceata_soft_reset(void) { PASS_RC(mmc_fastio_write(6, 4), 2, 0); sleep(HZ / 100); PASS_RC(mmc_fastio_write(6, 0), 2, 1); sleep(HZ / 100); long startusec = USEC_TIMER; uint32_t status; do { PASS_RC(mmc_fastio_read(0xf, &status), 2, 2); if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(3); sleep(HZ / 100); } while (status & 0x80); return 0; } static int mmc_dsta_check_data_success(void) { int rc = 0; uint32_t dsta = SDCI_DSTA; if (dsta & (SDCI_DSTA_WR_DATCRCE | SDCI_DSTA_RD_DATCRCE)) { if (dsta & SDCI_DSTA_WR_DATCRCE) rc |= 1; if (dsta & SDCI_DSTA_RD_DATCRCE) rc |= 2; if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_TXERR) rc |= 4; else if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_CARDERR) rc |= 8; } if (dsta & (SDCI_DSTA_RD_DATENDE0 | SDCI_DSTA_RD_DATENDE1 | SDCI_DSTA_RD_DATENDE2 | SDCI_DSTA_RD_DATENDE3 | SDCI_DSTA_RD_DATENDE4 | SDCI_DSTA_RD_DATENDE5 | SDCI_DSTA_RD_DATENDE6 | SDCI_DSTA_RD_DATENDE7)) rc |= 16; if (rc) RET_ERR(rc); return 0; } static void mmc_discard_irq(void) { SDCI_IRQ = SDCI_IRQ_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT | SDCI_IRQ_MASK_MASK_READ_WAIT_INT; semaphore_wait(&mmc_wakeup, 0); } static int ceata_read_multiple_register(uint32_t addr, void* dest, uint32_t size) { if (size > 0x10) RET_ERR(0); mmc_discard_irq(); SDCI_DMASIZE = size; SDCI_DMACOUNT = 1; SDCI_DMAADDR = dest; SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST; invalidate_dcache(); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG) | SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_READ | MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc) | MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc), NULL, CEATA_COMMAND_TIMEOUT), 2, 1); if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000) == OBJ_WAIT_TIMEDOUT) RET_ERR(2); PASS_RC(mmc_dsta_check_data_success(), 2, 3); return 0; } static int ceata_write_multiple_register(uint32_t addr, void* dest, uint32_t size) { uint32_t i; if (size > 0x10) RET_ERR(0); mmc_discard_irq(); SDCI_DMASIZE = size; SDCI_DMACOUNT = 0; SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST; PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG) | SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR | SDCI_CMD_RES_BUSY | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_WRITE | MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc) | MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc), NULL, CEATA_COMMAND_TIMEOUT), 3, 1); SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX; for (i = 0; i < size / 4; i++) SDCI_DATA = ((uint32_t*)dest)[i]; long startusec = USEC_TIMER; if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000) == OBJ_WAIT_TIMEDOUT) RET_ERR(2); while ((SDCI_STATE & SDCI_STATE_DAT_STATE_MASK) != SDCI_STATE_DAT_STATE_IDLE) { if (TIMEOUT_EXPIRED(startusec, CEATA_COMMAND_TIMEOUT)) RET_ERR(3); yield(); } PASS_RC(mmc_dsta_check_data_success(), 3, 4); return 0; } static int ceata_init(int buswidth) { uint32_t result; PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_SWITCH_ACCESS_WRITE_BYTE | MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_HS_TIMING) | MMC_CMD_SWITCH_VALUE(MMC_CMD_SWITCH_FIELD_HS_TIMING_HIGH_SPEED), &result, CEATA_COMMAND_TIMEOUT), 3, 0); if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(1); if (buswidth > 1) { int setting; if (buswidth == 4) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_4BIT; else if (buswidth == 8) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_8BIT; else setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_1BIT; PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, MMC_CMD_SWITCH_ACCESS_WRITE_BYTE | MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_BUS_WIDTH) | MMC_CMD_SWITCH_VALUE(setting), &result, CEATA_COMMAND_TIMEOUT), 3, 2); if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(3); if (buswidth == 4) SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_4BIT; else if (buswidth == 8) SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_8BIT; } PASS_RC(ceata_soft_reset(), 3, 4); PASS_RC(ceata_read_multiple_register(0, ceata_taskfile, 0x10), 3, 5); if (ceata_taskfile[0xc] != 0xce || ceata_taskfile[0xd] != 0xaa) RET_ERR(6); PASS_RC(mmc_fastio_write(6, 0), 3, 7); return 0; } static int ceata_check_error(void) { uint32_t status, error; PASS_RC(mmc_fastio_read(0xf, &status), 2, 0); if (status & 1) { PASS_RC(mmc_fastio_read(0x9, &error), 2, 1); RET_ERR((error << 2) | 2); } return 0; } static int ceata_wait_idle(void) { long startusec = USEC_TIMER; while (true) { uint32_t status; PASS_RC(mmc_fastio_read(0xf, &status), 1, 0); if (!(status & 0x88)) return 0; if (TIMEOUT_EXPIRED(startusec, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(1); sleep(HZ / 20); } } static int ceata_cancel_command(void) { *((uint32_t volatile*)0x3cf00200) = 0x9000e; udelay(1); *((uint32_t volatile*)0x3cf00200) = 0x9000f; udelay(1); *((uint32_t volatile*)0x3cf00200) = 0x90003; udelay(1); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_STOP_TRANSMISSION) | SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, 0, NULL, CEATA_COMMAND_TIMEOUT), 1, 0); PASS_RC(ceata_wait_idle(), 1, 1); return 0; } static int ceata_rw_multiple_block(bool write, void* buf, uint32_t count, long timeout) { mmc_discard_irq(); uint32_t responsetype; uint32_t cmdtype; uint32_t direction; if (write) { cmdtype = SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR; responsetype = SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY; direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_WRITE; } else { cmdtype = SDCI_CMD_CMD_TYPE_ADTC; responsetype = SDCI_CMD_RES_TYPE_R1; direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_READ; } SDCI_DMASIZE = 0x200; SDCI_DMAADDR = buf; SDCI_DMACOUNT = count; SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST; invalidate_dcache(); PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_BLOCK) | SDCI_CMD_CMD_TYPE_ADTC | cmdtype | responsetype | SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR, direction | MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_COUNT(count), NULL, CEATA_COMMAND_TIMEOUT), 4, 0); if (write) SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX; if (semaphore_wait(&mmc_wakeup, timeout) == OBJ_WAIT_TIMEDOUT) { PASS_RC(ceata_cancel_command(), 4, 1); RET_ERR(2); } PASS_RC(mmc_dsta_check_data_success(), 4, 3); if (semaphore_wait(&mmc_comp_wakeup, timeout) == OBJ_WAIT_TIMEDOUT) { PASS_RC(ceata_cancel_command(), 4, 4); RET_ERR(4); } PASS_RC(ceata_check_error(), 4, 5); return 0; } static int ata_identify(uint16_t* buf) { int i; if (ceata) { memset(ceata_taskfile, 0, 16); ceata_taskfile[0xf] = 0xec; PASS_RC(ceata_wait_idle(), 2, 0); PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1); PASS_RC(ceata_rw_multiple_block(false, buf, 1, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2); } else { PASS_RC(ata_wait_for_not_bsy(10000000), 1, 0); ata_write_cbr(&ATA_PIO_DVR, 0); ata_write_cbr(&ATA_PIO_CSD, 0xec); PASS_RC(ata_wait_for_start_of_transfer(10000000), 1, 1); for (i = 0; i < 0x100; i++) { uint16_t word = ata_read_cbr(&ATA_PIO_DTR); buf[i] = (word >> 8) | (word << 8); } } return 0; } static void ata_set_active(void) { ata_last_activity_value = current_tick; } bool ata_disk_is_active(void) { return ata_powered; } static int ata_set_feature(uint32_t feature, uint32_t param) { PASS_RC(ata_wait_for_rdy(500000), 1, 0); ata_write_cbr(&ATA_PIO_DVR, 0); ata_write_cbr(&ATA_PIO_FED, 3); ata_write_cbr(&ATA_PIO_SCR, param); ata_write_cbr(&ATA_PIO_CSD, feature); PASS_RC(ata_wait_for_rdy(500000), 1, 1); return 0; } static int ata_power_up(void) { ata_set_active(); if (ata_powered) return 0; ide_power_enable(true); long spinup_start = current_tick; if (ceata) { PWRCON(0) &= ~(1 << 9); SDCI_RESET = 0xa5; sleep(HZ / 100); *((uint32_t volatile*)0x3cf00380) = 0; *((uint32_t volatile*)0x3cf0010c) = 0xff; SDCI_CTRL = SDCI_CTRL_SDCIEN | SDCI_CTRL_CLK_SEL_SDCLK | SDCI_CTRL_BIT_8 | SDCI_CTRL_BIT_14; SDCI_CDIV = SDCI_CDIV_CLKDIV(260); *((uint32_t volatile*)0x3cf00200) = 0xb000f; SDCI_IRQ_MASK = SDCI_IRQ_MASK_MASK_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT; PASS_RC(mmc_init(), 2, 0); SDCI_CDIV = SDCI_CDIV_CLKDIV(4); sleep(HZ / 100); PASS_RC(ceata_init(8), 2, 1); PASS_RC(ata_identify(ata_identify_data), 2, 2); dma_mode = 0x44; } else { PWRCON(0) &= ~(1 << 5); ATA_CFG = BIT(0); sleep(HZ / 100); ATA_CFG = 0; sleep(HZ / 100); ATA_SWRST = BIT(0); sleep(HZ / 100); ATA_SWRST = 0; sleep(HZ / 10); ATA_CONTROL = BIT(0); sleep(HZ / 5); ATA_PIO_TIME = 0x191f7; ATA_PIO_LHR = 0; while (!(ATA_PIO_READY & BIT(1))) yield(); PASS_RC(ata_identify(ata_identify_data), 2, 0); uint32_t piotime = 0x11f3; uint32_t mdmatime = 0x1c175; uint32_t udmatime = 0x5071152; uint32_t param = 0; ata_dma_flags = 0; ata_lba48 = ata_identify_data[83] & BIT(10) ? true : false; if (ata_identify_data[53] & BIT(1)) { if (ata_identify_data[64] & BIT(1)) piotime = 0x2072; else if (ata_identify_data[64] & BIT(0)) piotime = 0x7083; } if (ata_identify_data[63] & BIT(2)) { mdmatime = 0x5072; param = 0x22; } else if (ata_identify_data[63] & BIT(1)) { mdmatime = 0x7083; param = 0x21; } if (ata_identify_data[63] & BITRANGE(0, 2)) { ata_dma_flags = BIT(3) | BIT(10); param |= 0x20; } if (ata_identify_data[53] & BIT(2)) { if (ata_identify_data[88] & BIT(4)) { udmatime = 0x2010a52; param = 0x44; } else if (ata_identify_data[88] & BIT(3)) { udmatime = 0x2020a52; param = 0x43; } else if (ata_identify_data[88] & BIT(2)) { udmatime = 0x3030a52; param = 0x42; } else if (ata_identify_data[88] & BIT(1)) { udmatime = 0x3050a52; param = 0x41; } if (ata_identify_data[88] & BITRANGE(0, 4)) { ata_dma_flags = BIT(2) | BIT(3) | BIT(9) | BIT(10); param |= 0x40; } } ata_dma = param ? true : false; dma_mode = param; PASS_RC(ata_set_feature(0xef, param), 2, 1); if (ata_identify_data[82] & BIT(5)) PASS_RC(ata_set_feature(0x02, 0), 2, 2); if (ata_identify_data[82] & BIT(6)) PASS_RC(ata_set_feature(0x55, 0), 2, 3); ATA_PIO_TIME = piotime; ATA_MDMA_TIME = mdmatime; ATA_UDMA_TIME = udmatime; } spinup_time = current_tick - spinup_start; if (ata_lba48) ata_total_sectors = ata_identify_data[100] | (((uint64_t)ata_identify_data[101]) << 16) | (((uint64_t)ata_identify_data[102]) << 32) | (((uint64_t)ata_identify_data[103]) << 48); else ata_total_sectors = ata_identify_data[60] | (((uint32_t)ata_identify_data[61]) << 16); ata_total_sectors >>= 3; ata_powered = true; ata_set_active(); return 0; } static void ata_power_down(void) { if (!ata_powered) return; ata_powered = false; if (ceata) { memset(ceata_taskfile, 0, 16); ceata_taskfile[0xf] = 0xe0; ceata_wait_idle(); ceata_write_multiple_register(0, ceata_taskfile, 16); sleep(HZ); PWRCON(0) |= (1 << 9); } else { ata_wait_for_rdy(1000000); ata_write_cbr(&ATA_PIO_DVR, 0); ata_write_cbr(&ATA_PIO_CSD, 0xe0); ata_wait_for_rdy(1000000); sleep(HZ / 30); ATA_CONTROL = 0; while (!(ATA_CONTROL & BIT(1))) yield(); PWRCON(0) |= (1 << 5); } ide_power_enable(false); } static int ata_rw_chunk_internal(uint64_t sector, uint32_t cnt, void* buffer, bool write) { if (ceata) { memset(ceata_taskfile, 0, 16); ceata_taskfile[0x2] = cnt >> 5; ceata_taskfile[0x3] = sector >> 21; ceata_taskfile[0x4] = sector >> 29; ceata_taskfile[0x5] = sector >> 37; ceata_taskfile[0xa] = cnt << 3; ceata_taskfile[0xb] = sector << 3; ceata_taskfile[0xc] = sector >> 5; ceata_taskfile[0xd] = sector >> 13; ceata_taskfile[0xf] = write ? 0x35 : 0x25; PASS_RC(ceata_wait_idle(), 2, 0); PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1); PASS_RC(ceata_rw_multiple_block(write, buffer, cnt << 3, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2); } else { PASS_RC(ata_wait_for_rdy(100000), 2, 0); ata_write_cbr(&ATA_PIO_DVR, 0); if (ata_lba48) { ata_write_cbr(&ATA_PIO_SCR, cnt >> 5); ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff); ata_write_cbr(&ATA_PIO_LHR, (sector >> 37) & 0xff); ata_write_cbr(&ATA_PIO_LMR, (sector >> 29) & 0xff); ata_write_cbr(&ATA_PIO_LLR, (sector >> 21) & 0xff); ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff); ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff); ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff); ata_write_cbr(&ATA_PIO_DVR, BIT(6)); if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x35 : 0x39); else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x25 : 0x29); } else { ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff); ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff); ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff); ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff); ata_write_cbr(&ATA_PIO_DVR, BIT(6) | ((sector >> 21) & 0xf)); if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xca : 0x30); else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xc8 : 0xc4); } if (ata_dma) { PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1); if (write) { ATA_SBUF_START = buffer; ATA_SBUF_SIZE = SECTOR_SIZE * cnt; ATA_CFG |= BIT(4); } else { ATA_TBUF_START = buffer; ATA_TBUF_SIZE = SECTOR_SIZE * cnt; ATA_CFG &= ~BIT(4); } ATA_XFR_NUM = SECTOR_SIZE * cnt - 1; ATA_CFG |= ata_dma_flags; ATA_CFG &= ~(BIT(7) | BIT(8)); semaphore_wait(&ata_wakeup, 0); ATA_IRQ = BITRANGE(0, 4); ATA_IRQ_MASK = BIT(0); ATA_COMMAND = BIT(0); if (semaphore_wait(&ata_wakeup, 500000 * HZ / 1000000) == OBJ_WAIT_TIMEDOUT) { ATA_COMMAND = BIT(1); ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12)); RET_ERR(2); } ATA_COMMAND = BIT(1); ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12)); } else { cnt *= SECTOR_SIZE / 512; while (cnt--) { int i; PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1); if (write) for (i = 0; i < 256; i++) ata_write_cbr(&ATA_PIO_DTR, ((uint16_t*)buffer)[i]); else for (i = 0; i < 256; i++) ((uint16_t*)buffer)[i] = ata_read_cbr(&ATA_PIO_DTR); buffer += 512; } } PASS_RC(ata_wait_for_end_of_transfer(100000), 2, 3); } return 0; } static int ata_rw_chunk(uint64_t sector, uint32_t cnt, void* buffer, bool write) { led(true); int rc = ata_rw_chunk_internal(sector, cnt, buffer, write); led(false); return rc; } #ifdef ATA_HAVE_BBT int ata_bbt_translate(uint64_t sector, uint32_t count, uint64_t* phys, uint32_t* physcount) { if (sector + count > ata_virtual_sectors) RET_ERR(0); if (!ata_bbt) { *phys = sector; *physcount = count; return 0; } if (!count) { *phys = 0; *physcount = 0; return 0; } uint32_t offset; uint32_t l0idx = sector >> 15; uint32_t l0offs = sector & 0x7fff; *physcount = MIN(count, 0x8000 - l0offs); uint32_t l0data = ata_bbt[0][l0idx << 1]; uint32_t base = ata_bbt[0][(l0idx << 1) | 1] << 12; if (l0data < 0x8000) offset = l0data + base; else { uint32_t l1idx = (sector >> 10) & 0x1f; uint32_t l1offs = sector & 0x3ff; *physcount = MIN(count, 0x400 - l1offs); uint32_t l1data = ata_bbt[l0data & 0x7fff][l1idx]; if (l1data < 0x8000) offset = l1data + base; else { uint32_t l2idx = (sector >> 5) & 0x1f; uint32_t l2offs = sector & 0x1f; *physcount = MIN(count, 0x20 - l2offs); uint32_t l2data = ata_bbt[l1data & 0x7fff][l2idx]; if (l2data < 0x8000) offset = l2data + base; else { uint32_t l3idx = sector & 0x1f; uint32_t l3data = ata_bbt[l2data & 0x7fff][l3idx]; for (*physcount = 1; *physcount < count && l3idx + *physcount < 0x20; (*physcount)++) if (ata_bbt[l2data & 0x7fff][l3idx + *physcount] != l3data) break; offset = l3data + base; } } } *phys = sector + offset; return 0; } #endif static int ata_rw_sectors(uint64_t sector, uint32_t count, void* buffer, bool write) { if (((uint32_t)buffer) & 0xf) panicf("ATA: Misaligned data buffer at %08X (sector %lu, count %lu)", (unsigned int)buffer, (long unsigned int)sector, (long unsigned int)count); #ifdef ATA_HAVE_BBT if (sector + count > ata_virtual_sectors) RET_ERR(0); if (ata_bbt) while (count) { uint64_t phys; uint32_t cnt; PASS_RC(ata_bbt_translate(sector, count, &phys, &cnt), 0, 0); uint32_t offset = phys - sector; if (offset != ata_last_offset && phys - ata_last_phys < 64) ata_soft_reset(); ata_last_offset = offset; ata_last_phys = phys + cnt; PASS_RC(ata_rw_sectors_internal(phys, cnt, buffer, write), 0, 0); buffer += cnt * SECTOR_SIZE; sector += cnt; count -= cnt; } else PASS_RC(ata_rw_sectors_internal(sector, count, buffer, write), 0, 0); return 0; } int ata_rw_sectors_internal(uint64_t sector, uint32_t count, void* buffer, bool write) { #endif if (sector + count > ata_total_sectors) RET_ERR(0); if (!ata_powered) ata_power_up(); ata_set_active(); if (ata_dma && write) clean_dcache(); else if (ata_dma) invalidate_dcache(); if (!ceata) ATA_COMMAND = BIT(1); while (count) { uint32_t cnt = MIN(ata_lba48 ? 8192 : 32, count); int rc = -1; rc = ata_rw_chunk(sector, cnt, buffer, write); if (rc && ata_error_srst) ata_soft_reset(); if (rc && ata_retries) { void* buf = buffer; uint64_t sect; for (sect = sector; sect < sector + cnt; sect++) { rc = -1; int tries = ata_retries; while (tries-- && rc) { rc = ata_rw_chunk(sect, 1, buf, write); if (rc && ata_error_srst) ata_soft_reset(); } if (rc) break; buf += SECTOR_SIZE; } } PASS_RC(rc, 1, 1); buffer += SECTOR_SIZE * cnt; sector += cnt; count -= cnt; } ata_set_active(); return 0; } static void ata_thread(void) { while (true) { mutex_lock(&ata_mutex); if (TIME_AFTER(current_tick, ata_last_activity_value + ata_sleep_timeout) && ata_powered) { call_storage_idle_notifys(false); ata_power_down(); } mutex_unlock(&ata_mutex); sleep(HZ / 2); } } /* API Functions */ int ata_soft_reset(void) { int rc; mutex_lock(&ata_mutex); if (!ata_powered) ata_power_up(); ata_set_active(); if (ceata) rc = ceata_soft_reset(); else { ata_write_cbr(&ATA_PIO_DAD, BIT(1) | BIT(2)); udelay(10); ata_write_cbr(&ATA_PIO_DAD, 0); rc = ata_wait_for_rdy(20000000); } if (IS_ERR(rc)) { ata_power_down(); sleep(HZ * 3); ata_power_up(); } ata_set_active(); mutex_unlock(&ata_mutex); return rc; } int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int incount, void* inbuf) { mutex_lock(&ata_mutex); int rc = ata_rw_sectors(start, incount, inbuf, false); mutex_unlock(&ata_mutex); return rc; } int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* outbuf) { mutex_lock(&ata_mutex); int rc = ata_rw_sectors(start, count, (void*)((uint32_t)outbuf), true); mutex_unlock(&ata_mutex); return rc; } void ata_spindown(int seconds) { ata_sleep_timeout = seconds * HZ; } void ata_sleep(void) { ata_last_activity_value = current_tick - ata_sleep_timeout + HZ / 5; } void ata_sleepnow(void) { mutex_lock(&ata_mutex); ata_power_down(); mutex_unlock(&ata_mutex); } void ata_close(void) { ata_sleepnow(); } void ata_spin(void) { ata_set_active(); } void ata_get_info(IF_MD2(int drive,) struct storage_info *info) { (*info).sector_size = SECTOR_SIZE; #ifdef ATA_HAVE_BBT (*info).num_sectors = ata_virtual_sectors; #else (*info).num_sectors = ata_total_sectors; #endif (*info).vendor = "Apple"; (*info).product = "iPod Classic"; (*info).revision = "1.0"; } long ata_last_disk_activity(void) { return ata_last_activity_value; } #ifdef ATA_HAVE_BBT void ata_bbt_disable(void) { mutex_lock(&ata_mutex); ata_bbt = NULL; ata_virtual_sectors = ata_total_sectors; mutex_unlock(&ata_mutex); } void ata_bbt_reload(void) { mutex_lock(&ata_mutex); ata_bbt_disable(); ata_power_up(); uint32_t* buf = (uint32_t*)(ata_bbt_buf + sizeof(ata_bbt_buf) - SECTOR_SIZE); if (buf) { if (IS_ERR(ata_bbt_read_sectors(0, 1, buf))) ata_virtual_sectors = ata_total_sectors; else if (!memcmp(buf, "emBIbbth", 8)) { ata_virtual_sectors = (((uint64_t)buf[0x1fd]) << 32) | buf[0x1fc]; uint32_t count = buf[0x1ff]; if (count > ATA_BBT_PAGES / 64) panicf("ATA: BBT too big! (space: %d, size: %d)", ATA_BBT_PAGES, (unsigned int)(count * 64)); uint32_t i; uint32_t cnt; ata_bbt = (typeof(ata_bbt))ata_bbt_buf; for (i = 0; i < count; i += cnt) { uint32_t phys = buf[0x200 + i]; for (cnt = 1; cnt < count; cnt++) if (buf[0x200 + i + cnt] != phys + cnt) break; if (IS_ERR(ata_bbt_read_sectors(phys, cnt, ata_bbt[i << 6]))) { ata_virtual_sectors = ata_total_sectors; break; } } } else ata_virtual_sectors = ata_total_sectors; } else ata_virtual_sectors = ata_total_sectors; mutex_unlock(&ata_mutex); } #endif int ata_init(void) { mutex_init(&ata_mutex); semaphore_init(&ata_wakeup, 1, 0); semaphore_init(&mmc_wakeup, 1, 0); semaphore_init(&mmc_comp_wakeup, 1, 0); ceata = PDAT(11) & BIT(1); if (ceata) { ata_lba48 = true; ata_dma = true; PCON(8) = 0x33333333; PCON(9) = (PCON(9) & ~0xff) | 0x33; PCON(11) |= 0xf; *((uint32_t volatile*)0x38a00000) = 0; *((uint32_t volatile*)0x38700000) = 0; } else { PCON(7) = 0x44444444; PCON(8) = 0x44444444; PCON(9) = 0x44444444; PCON(10) = (PCON(10) & ~0xffff) | 0x4444; } ata_powered = false; ata_total_sectors = 0; ata_power_up(); #ifdef ATA_HAVE_BBT ata_bbt_reload(); #endif create_thread(ata_thread, ata_stack, sizeof(ata_stack), 0, "ATA idle monitor" IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); return 0; } #ifdef CONFIG_STORAGE_MULTI static int ata_num_drives(int first_drive) { /* We don't care which logical drive number(s) we have been assigned */ (void)first_drive; return 1; } #endif unsigned short* ata_get_identify(void) { return ata_identify_data; } int ata_spinup_time(void) { return spinup_time; } int ata_get_dma_mode(void) { return dma_mode; } void INT_ATA(void) { uint32_t ata_irq = ATA_IRQ; ATA_IRQ = ata_irq; if (ata_irq & ATA_IRQ_MASK) semaphore_release(&ata_wakeup); ATA_IRQ_MASK = 0; } void INT_MMC(void) { uint32_t irq = SDCI_IRQ; if (irq & SDCI_IRQ_DAT_DONE_INT) semaphore_release(&mmc_wakeup); if (irq & SDCI_IRQ_IOCARD_IRQ_INT) semaphore_release(&mmc_comp_wakeup); SDCI_IRQ = irq; }