/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "kernel.h" #include "system.h" #include "gcc_extensions.h" #include "system-target.h" #include "cpu.h" #include "clkctrl-imx233.h" #include "pinctrl-imx233.h" #include "timrot-imx233.h" #include "dma-imx233.h" #include "ssp-imx233.h" #include "i2c-imx233.h" #if IMX233_SUBTARGET >= 3700 #include "dcp-imx233.h" #endif #include "pwm-imx233.h" #include "icoll-imx233.h" #include "lradc-imx233.h" #include "rtc-imx233.h" #include "power-imx233.h" #include "emi-imx233.h" #include "lcd.h" #include "backlight-target.h" #include "button.h" #include "fmradio_i2c.h" #include "powermgmt-imx233.h" #include "led-imx233.h" #include "regs/digctl.h" #include "regs/usbphy.h" #include "regs/timrot.h" #define WATCHDOG_HW_DELAY (10 * HZ) #define WATCHDOG_SW_DELAY (5 * HZ) static struct mutex cpufreq_mtx; void UIE(unsigned int pc, unsigned int num); static void woof_woof(void) { /* stop hardware watchdog, we catched the error */ imx233_rtc_enable_watchdog(false); /* recover current PC and trigger abort, so in the hope to get a useful * backtrace */ uint32_t pc = HW_DIGCTL_SCRATCH0; UIE(pc, 4); } static void good_dog(void) { imx233_rtc_reset_watchdog(WATCHDOG_HW_DELAY * 1000 / HZ); /* ms */ imx233_rtc_enable_watchdog(true); imx233_timrot_setup_simple(TIMER_WATCHDOG, false, WATCHDOG_SW_DELAY * 1000 / HZ, TIMER_SRC_1KHZ, &woof_woof); imx233_timrot_set_priority(TIMER_WATCHDOG, ICOLL_PRIO_WATCHDOG); } void imx233_keep_alive(void) { /* setting up a timer is not exactly a cheap operation so only do so * every second */ static uint32_t last_alive = 0; if(imx233_us_elapsed(last_alive, 1000000)) { good_dog(); last_alive = HW_DIGCTL_MICROSECONDS; } } static void watchdog_init(void) { /* setup two mechanisms: * - hardware watchdog to reset the player after 10 seconds * - software watchdog using a timer to panic after 5 seconds * The hardware mechanism ensures reset when the player is completely * dead and it actually resets the whole chip. On the contrary, the software * mechanism allows partial recovery by panicing and printing (maybe) useful * information, it uses a dedicated timer with the highest level of interrupt * priority so it works even if the player is stuck in IRQ context */ good_dog(); } void imx233_system_prepare_shutdown(void) { /* wait a bit, useful for the user to stop touching anything */ sleep(HZ / 2); /* disable watchdog just in case since we will disable interrupts */ imx233_rtc_enable_watchdog(false); /* disable interrupts, it's probably better to avoid any action so close * to shutdown */ disable_interrupt(IRQ_FIQ_STATUS); #ifdef SANSA_FUZEPLUS /* This pin seems to be important to shutdown the hardware properly */ imx233_pinctrl_acquire(0, 9, "power off"); imx233_pinctrl_set_function(0, 9, PINCTRL_FUNCTION_GPIO); imx233_pinctrl_enable_gpio(0, 9, true); imx233_pinctrl_set_gpio(0, 9, true); #endif } void imx233_chip_reset(void) { #if IMX233_SUBTARGET >= 3700 HW_CLKCTRL_RESET = BM_CLKCTRL_RESET_CHIP; #else BF_WR_ALL(POWER_RESET, UNLOCK_V(KEY), RST_DIG(1)); #endif } void system_reboot(void) { imx233_system_prepare_shutdown(); /* reset */ imx233_chip_reset(); while(1); } void system_exception_wait(void) { /* stop hadrware watchdog, IRQs are stopped */ imx233_rtc_enable_watchdog(false); /* make sure lcd and backlight are on */ lcd_update(); backlight_hw_on(); backlight_hw_brightness(DEFAULT_BRIGHTNESS_SETTING); /* wait until button release (if a button is pressed) * NOTE at this point, interrupts are off so that rules out touchpad and * ADC, so we are pretty much left with PSWITCH only. If other buttons are * wanted, it is possible to implement a busy polling version of button * reading for GPIO and ADC in button-imx233 but this is not done at the * moment. */ while(imx233_power_read_pswitch() != 0) {} while(imx233_power_read_pswitch() == 0) {} while(imx233_power_read_pswitch() != 0) {} } int system_memory_guard(int newmode) { (void)newmode; return 0; } static void set_page_tables(void) { /* map every memory region to itself */ map_section(0, 0, 0x1000, CACHE_NONE); /* map RAM and enable caching for it */ map_section(DRAM_ORIG, CACHED_DRAM_ADDR, MEMORYSIZE, CACHE_ALL); map_section(DRAM_ORIG, BUFFERED_DRAM_ADDR, MEMORYSIZE, BUFFERED); } void memory_init(void) { ttb_init(); set_page_tables(); enable_mmu(); } void system_init(void) { /* NOTE: don't use anything here that might require tick task ! * It is initialized by kernel_init *after* system_init(). * The main() will naturally set cpu speed to normal after kernel_init() * so don't bother if the cpu is running at 24MHz here. * Make sure IO clock is running at expected speed */ mutex_init(&cpufreq_mtx); imx233_clkctrl_init(); imx233_clkctrl_enable(CLK_PLL, true); #if IMX233_SUBTARGET >= 3700 imx233_clkctrl_set_frac_div(CLK_IO, 18); // clk_io@clk_pll #endif imx233_rtc_init(); imx233_icoll_init(); imx233_pinctrl_init(); imx233_timrot_init(); imx233_dma_init(); imx233_ssp_init(); #if IMX233_SUBTARGET >= 3700 imx233_dcp_init(); #endif imx233_pwm_init(); imx233_lradc_init(); imx233_power_init(); imx233_i2c_init(); imx233_powermgmt_init(); imx233_led_init(); /* setup watchdog */ watchdog_init(); /* make sure auto-slow is disable now, we don't know at which frequency we * are running and auto-slow could violate constraints on {xbus,hbus} */ imx233_clkctrl_enable_auto_slow(false); imx233_clkctrl_set_auto_slow_div(BV_CLKCTRL_HBUS_SLOW_DIV__BY8); cpu_frequency = imx233_clkctrl_get_freq(CLK_CPU) * 1000; /* variable in Hz */ #if !defined(BOOTLOADER) && CONFIG_TUNER != 0 fmradio_i2c_init(); #endif } void system_prepare_fw_start(void) { /* keep alive to get enough time, stop watchdog */ imx233_keep_alive(); imx233_rtc_enable_watchdog(false); } bool imx233_us_elapsed(uint32_t ref, unsigned us_delay) { uint32_t cur = HW_DIGCTL_MICROSECONDS; if(ref + us_delay <= ref) return !(cur > ref) && !(cur < (ref + us_delay)); else return (cur < ref) || cur >= (ref + us_delay); } void imx233_reset_block(volatile uint32_t *block_reg) { /* deassert reset and clock gate */ __REG_CLR(*block_reg) = __BLOCK_SFTRST; while(*block_reg & __BLOCK_SFTRST); __REG_CLR(*block_reg) = __BLOCK_CLKGATE; while(*block_reg & __BLOCK_CLKGATE); /* soft-reset */ __REG_SET(*block_reg) = __BLOCK_SFTRST; /* make sure block is gated off */ while(!(*block_reg & __BLOCK_CLKGATE)); /* bring block out of reset */ __REG_CLR(*block_reg) = __BLOCK_SFTRST; while(*block_reg & __BLOCK_SFTRST); /* make sure clock is running */ __REG_CLR(*block_reg) = __BLOCK_CLKGATE; while(*block_reg & __BLOCK_CLKGATE); } void udelay(unsigned us) { uint32_t ref = HW_DIGCTL_MICROSECONDS; /* increase number of us by 1 to make sure we wait *at least* the requested * time */ while(!imx233_us_elapsed(ref, us + 1)); } void imx233_digctl_set_arm_cache_timings(unsigned timings) { #if IMX233_SUBTARGET >= 3780 BF_WR_ALL(DIGCTL_ARMCACHE, ITAG_SS(timings), DTAG_SS(timings), CACHE_SS(timings), DRTY_SS(timings), VALID_SS(timings)); #else BF_WR_ALL(DIGCTL_ARMCACHE, ITAG_SS(timings), DTAG_SS(timings), CACHE_SS(timings)); #endif } struct cpufreq_profile_t { /* key */ long cpu_freq; /* parameters */ int vddd, vddd_bo; int hbus_div; int cpu_idiv, cpu_fdiv; long emi_freq; int arm_cache_timings; }; /* Some devices don't handle very well memory frequency changes, so avoid them * by running at highest speed at all time */ #if defined(CREATIVE_ZEN) || defined(CREATIVE_ZENXFI) #define EMIFREQ_NORMAL IMX233_EMIFREQ_130_MHz #define EMIFREQ_MAX IMX233_EMIFREQ_130_MHz /* we need a VDDD of at least 1.2V to run the EMI at 130Mhz */ #define VDDD_MIN 1275 #else /* weird targets */ #define EMIFREQ_NORMAL IMX233_EMIFREQ_64_MHz #define EMIFREQ_MAX IMX233_EMIFREQ_130_MHz #define VDDD_MIN 1050 #endif #if IMX233_SUBTARGET >= 3700 static struct cpufreq_profile_t cpu_profiles[] = { /* clk_p@454.74 MHz, clk_h@151.58 MHz, clk_emi@130.91 MHz, VDDD@1.550 V */ {IMX233_CPUFREQ_454_MHz, 1550, 1450, 3, 1, 19, EMIFREQ_MAX, 0}, /* clk_p@320.00 MHz, clk_h@106.66 MHz, clk_emi@130.91 MHz, VDDD@1.450 V */ {IMX233_CPUFREQ_320_MHz, 1450, 1350, 3, 1, 27, EMIFREQ_MAX, 0}, /* clk_p@261.82 MHz, clk_h@130.91 MHz, clk_emi@130.91 MHz, VDDD@1.275 V */ {IMX233_CPUFREQ_261_MHz, 1275, 1175, 2, 1, 33, EMIFREQ_MAX, 0}, /* clk_p@64 MHz, clk_h@64 MHz, clk_emi@64 MHz, VDDD@1.050 V (or 1.275V) */ {IMX233_CPUFREQ_64_MHz, VDDD_MIN, 975, 1, 5, 27, EMIFREQ_NORMAL, 3}, /* dummy */ {0, 0, 0, 0, 0, 0, 0, 0} }; #endif #define NR_CPU_PROFILES ((int)(sizeof(cpu_profiles)/sizeof(cpu_profiles[0]))) void imx233_set_cpu_frequency(long frequency) { #if IMX233_SUBTARGET >= 3700 /* don't change the frequency if it is useless (changes are expensive) */ if(cpu_frequency == frequency) return; struct cpufreq_profile_t *prof = cpu_profiles; while(prof->cpu_freq != 0 && prof->cpu_freq != frequency) prof++; if(prof->cpu_freq == 0) return; /* disable auto-slow (enable back afterwards) */ imx233_clkctrl_enable_auto_slow(false); /* WARNING watch out the order ! */ if(frequency > cpu_frequency) { /* Change VDDD regulator */ imx233_power_set_regulator(REGULATOR_VDDD, prof->vddd, prof->vddd_bo); /* Change ARM cache timings */ imx233_digctl_set_arm_cache_timings(prof->arm_cache_timings); /* Change CPU and HBUS frequencies */ imx233_clkctrl_set_cpu_hbus_div(prof->cpu_idiv, prof->cpu_fdiv, prof->hbus_div); /* Set the new EMI frequency */ imx233_emi_set_frequency(prof->emi_freq); } else { /* Change CPU and HBUS frequencies */ imx233_clkctrl_set_cpu_hbus_div(prof->cpu_idiv, prof->cpu_fdiv, prof->hbus_div); /* Set the new EMI frequency */ imx233_emi_set_frequency(prof->emi_freq); /* Change ARM cache timings */ imx233_digctl_set_arm_cache_timings(prof->arm_cache_timings); /* Change VDDD regulator */ imx233_power_set_regulator(REGULATOR_VDDD, prof->vddd, prof->vddd_bo); } /* enable auto slow again */ imx233_clkctrl_enable_auto_slow(true); /* update frequency */ cpu_frequency = frequency; #else (void) frequency; #endif } #ifdef HAVE_ADJUSTABLE_CPU_FREQ bool set_cpu_frequency__lock(void) { if (get_processor_mode() != CPU_MODE_THREAD_CONTEXT) return false; mutex_lock(&cpufreq_mtx); return true; } void set_cpu_frequency__unlock(void) { mutex_unlock(&cpufreq_mtx); } void set_cpu_frequency(long frequency) { return imx233_set_cpu_frequency(frequency); } #endif void imx233_enable_usb_controller(bool enable) { if(enable) BF_CLR(DIGCTL_CTRL, USB_CLKGATE); else BF_SET(DIGCTL_CTRL, USB_CLKGATE); } void imx233_enable_usb_phy(bool enable) { if(enable) { BF_CLR(USBPHY_CTRL, SFTRST); BF_CLR(USBPHY_CTRL, CLKGATE); HW_USBPHY_PWD_CLR = 0xffffffff; } else { HW_USBPHY_PWD_SET = 0xffffffff; BF_SET(USBPHY_CTRL, SFTRST); BF_SET(USBPHY_CTRL, CLKGATE); } }