/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Michael Sevakis * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "system.h" #include "kernel.h" #include "audio.h" #include "sound.h" #include "ccm-imx31.h" #include "sdma-imx31.h" #include "mmu-imx31.h" #define DMA_PLAY_CH_NUM 2 #define DMA_REC_CH_NUM 1 #define DMA_PLAY_CH_PRIORITY 6 #define DMA_REC_CH_PRIORITY 6 static struct buffer_descriptor dma_play_bd DEVBSS_ATTR; static struct channel_descriptor dma_play_cd DEVBSS_ATTR; struct dma_data { int locked; int callback_pending; /* DMA interrupt happened while locked */ int state; }; static struct dma_data dma_play_data = { /* Initialize to a locked, stopped state */ .locked = 0, .callback_pending = 0, .state = 0 }; static void play_dma_callback(void) { unsigned char *start; size_t size = 0; pcm_more_callback_type get_more = pcm_callback_for_more; if (dma_play_data.locked != 0) { /* Callback is locked out */ dma_play_data.callback_pending = dma_play_data.state; return; } if (dma_play_bd.mode.status & BD_RROR) { /* Stop on error */ } else if (get_more != NULL && (get_more(&start, &size), size != 0)) { start = (void*)(((unsigned long)start + 3) & ~3); size &= ~3; /* Flush any pending cache writes */ clean_dcache_range(start, size); dma_play_bd.buf_addr = (void *)addr_virt_to_phys((unsigned long)start); dma_play_bd.mode.count = size; dma_play_bd.mode.command = TRANSFER_16BIT; dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; sdma_channel_run(DMA_PLAY_CH_NUM); return; } /* Error, callback missing or no more DMA to do */ pcm_play_dma_stop(); pcm_play_dma_stopped_callback(); } void pcm_play_lock(void) { if (++dma_play_data.locked == 1) imx31_regclr32(&SSI_SIER2, SSI_SIER_TDMAE); } void pcm_play_unlock(void) { if (--dma_play_data.locked == 0 && dma_play_data.state != 0) { int oldstatus = disable_irq_save(); int pending = dma_play_data.callback_pending; dma_play_data.callback_pending = 0; SSI_SIER2 |= SSI_SIER_TDMAE; restore_irq(oldstatus); /* Should an interrupt be forced instead? The upper pcm layer can * call producer's callback in thread context so technically this is * acceptable. */ if (pending != 0) play_dma_callback(); } } void pcm_dma_apply_settings(void) { audiohw_set_frequency(pcm_fsel); } void pcm_play_dma_init(void) { /* Init channel information */ dma_play_cd.bd_count = 1; dma_play_cd.callback = play_dma_callback; dma_play_cd.shp_addr = SDMA_PER_ADDR_SSI2_TX1; dma_play_cd.wml = SDMA_SSI_TXFIFO_WML*2; dma_play_cd.per_type = SDMA_PER_SSI_SHP; /* SSI2 shared with SDMA core */ dma_play_cd.tran_type = SDMA_TRAN_EMI_2_PER; dma_play_cd.event_id1 = SDMA_REQ_SSI2_TX1; sdma_channel_init(DMA_PLAY_CH_NUM, &dma_play_cd, &dma_play_bd); sdma_channel_set_priority(DMA_PLAY_CH_NUM, DMA_PLAY_CH_PRIORITY); ccm_module_clock_gating(CG_SSI1, CGM_ON_RUN_WAIT); ccm_module_clock_gating(CG_SSI2, CGM_ON_RUN_WAIT); /* Reset & disable SSIs */ SSI_SCR1 &= ~SSI_SCR_SSIEN; SSI_SCR2 &= ~SSI_SCR_SSIEN; SSI_SIER1 = 0; SSI_SIER2 = 0; /* Set up audio mux */ /* Port 2 (internally connected to SSI2) * All clocking is output sourced from port 4 */ AUDMUX_PTCR2 = AUDMUX_PTCR_TFS_DIR | AUDMUX_PTCR_TFSEL_PORT4 | AUDMUX_PTCR_TCLKDIR | AUDMUX_PTCR_TCSEL_PORT4 | AUDMUX_PTCR_SYN; /* Receive data from port 4 */ AUDMUX_PDCR2 = AUDMUX_PDCR_RXDSEL_PORT4; /* All clock lines are inputs sourced from the master mode codec and * sent back to SSI2 through port 2 */ AUDMUX_PTCR4 = AUDMUX_PTCR_SYN; /* Receive data from port 2 */ AUDMUX_PDCR4 = AUDMUX_PDCR_RXDSEL_PORT2; /* PORT1 (internally connected to SSI1) routes clocking to PORT5 to * provide MCLK to the codec */ /* TX clocks are inputs taken from SSI2 */ /* RX clocks are outputs taken from PORT4 */ AUDMUX_PTCR1 = AUDMUX_PTCR_RFS_DIR | AUDMUX_PTCR_RFSSEL_PORT4 | AUDMUX_PTCR_RCLKDIR | AUDMUX_PTCR_RCSEL_PORT4; /* RX data taken from PORT4 */ AUDMUX_PDCR1 = AUDMUX_PDCR_RXDSEL_PORT4; /* PORT5 outputs TCLK sourced from PORT1 (SSI1) */ AUDMUX_PTCR5 = AUDMUX_PTCR_TCLKDIR | AUDMUX_PTCR_TCSEL_PORT1; AUDMUX_PDCR5 = 0; /* Setup SSIs */ /* SSI2 - SoC software interface for all I2S data out */ SSI_SCR2 = SSI_SCR_SYN | SSI_SCR_I2S_MODE_SLAVE; SSI_STCR2 = SSI_STCR_TXBIT0 | SSI_STCR_TSCKP | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TFEN0; /* 16 bits per word, 2 words per frame */ SSI_STCCR2 = SSI_STRCCR_WL16 | ((2-1) << SSI_STRCCR_DC_POS) | ((4-1) << SSI_STRCCR_PM_POS); /* Transmit low watermark */ SSI_SFCSR2 = (SSI_SFCSR2 & ~SSI_SFCSR_TFWM0) | ((8-SDMA_SSI_TXFIFO_WML) << SSI_SFCSR_TFWM0_POS); SSI_STMSK2 = 0; /* SSI1 - provides MCLK to codec. Receives data from codec. */ SSI_STCR1 = SSI_STCR_TXDIR; /* f(INT_BIT_CLK) = * f(SYS_CLK) / [(DIV2 + 1)*(7*PSR + 1)*(PM + 1)*2] = * 677737600 / [(1 + 1)*(7*0 + 1)*(0 + 1)*2] = * 677737600 / 4 = 169344000 Hz * * 45.4.2.2 DIV2, PSR, and PM Bit Description states: * Bits DIV2, PSR, and PM should not be all set to zero at the same * time. * * The hardware seems to force a divide by 4 even if all bits are * zero but comply by setting DIV2 and the others to zero. */ SSI_STCCR1 = SSI_STRCCR_DIV2 | ((1-1) << SSI_STRCCR_PM_POS); /* SSI1 - receive - asynchronous clocks */ SSI_SCR1 = SSI_SCR_I2S_MODE_SLAVE; SSI_SRCR1 = SSI_SRCR_RXBIT0 | SSI_SRCR_RSCKP | SSI_SRCR_RFSI | SSI_SRCR_REFS; /* 16 bits per word, 2 words per frame */ SSI_SRCCR1 = SSI_STRCCR_WL16 | ((2-1) << SSI_STRCCR_DC_POS) | ((4-1) << SSI_STRCCR_PM_POS); /* Receive high watermark */ SSI_SFCSR1 = (SSI_SFCSR1 & ~SSI_SFCSR_RFWM0) | (SDMA_SSI_RXFIFO_WML << SSI_SFCSR_RFWM0_POS); SSI_SRMSK1 = 0; /* Enable SSI1 (codec clock) */ SSI_SCR1 |= SSI_SCR_SSIEN; audiohw_init(); } void pcm_postinit(void) { audiohw_postinit(); } static void play_start_pcm(void) { /* Stop transmission (if in progress) */ SSI_SCR2 &= ~SSI_SCR_TE; SSI_SCR2 |= SSI_SCR_SSIEN; /* Enable SSI */ SSI_STCR2 |= SSI_STCR_TFEN0; /* Enable TX FIFO */ dma_play_data.state = 1; /* Enable DMA requests on unlock */ /* Do prefill to prevent swapped channels (see TLSbo61214 in MCIMX31CE). * No actual solution was offered but this appears to work. */ SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_STX0_2 = 0; SSI_SCR2 |= SSI_SCR_TE; /* Start transmitting */ } static void play_stop_pcm(void) { /* Wait for FIFO to empty */ while (SSI_SFCSR_TFCNT0 & SSI_SFCSR2); /* Disable transmission */ SSI_STCR2 &= ~SSI_STCR_TFEN0; SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN); /* Set state before pending to prevent race with interrupt */ /* Do not enable DMA requests on unlock */ dma_play_data.state = 0; dma_play_data.callback_pending = 0; } void pcm_play_dma_start(const void *addr, size_t size) { sdma_channel_stop(DMA_PLAY_CH_NUM); /* Disable transmission */ SSI_STCR2 &= ~SSI_STCR_TFEN0; SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN); addr = (void *)(((unsigned long)addr + 3) & ~3); size &= ~3; if (size <= 0) return; if (!sdma_channel_reset(DMA_PLAY_CH_NUM)) return; clean_dcache_range(addr, size); dma_play_bd.buf_addr = (void *)addr_virt_to_phys((unsigned long)(void *)addr); dma_play_bd.mode.count = size; dma_play_bd.mode.command = TRANSFER_16BIT; dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; play_start_pcm(); sdma_channel_run(DMA_PLAY_CH_NUM); } void pcm_play_dma_stop(void) { sdma_channel_stop(DMA_PLAY_CH_NUM); play_stop_pcm(); } void pcm_play_dma_pause(bool pause) { if (pause) { sdma_channel_pause(DMA_PLAY_CH_NUM); play_stop_pcm(); } else { play_start_pcm(); sdma_channel_run(DMA_PLAY_CH_NUM); } } /* Return the number of bytes waiting - full L-R sample pairs only */ size_t pcm_get_bytes_waiting(void) { static unsigned long dsa DEVBSS_ATTR; long offs, size; int oldstatus; /* read burst dma source address register in channel context */ sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1); oldstatus = disable_irq_save(); offs = dsa - (unsigned long)dma_play_bd.buf_addr; size = dma_play_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (offs >= 0 && offs < size) { return (size - offs) & ~3; } return 0; } /* Return a pointer to the samples and the number of them in *count */ const void * pcm_play_dma_get_peak_buffer(int *count) { static unsigned long dsa DEVBSS_ATTR; unsigned long addr; long offs, size; int oldstatus; /* read burst dma source address register in channel context */ sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1); oldstatus = disable_irq_save(); addr = dsa; offs = addr - (unsigned long)dma_play_bd.buf_addr; size = dma_play_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (offs >= 0 && offs < size) { *count = (size - offs) >> 2; return (void *)((addr + 2) & ~3); } *count = 0; return NULL; } void * pcm_dma_addr(void *addr) { return (void *)addr_virt_to_phys((unsigned long)addr); } #ifdef HAVE_RECORDING static struct buffer_descriptor dma_rec_bd DEVBSS_ATTR; static struct channel_descriptor dma_rec_cd DEVBSS_ATTR; static struct dma_data dma_rec_data = { /* Initialize to a locked, stopped state */ .locked = 0, .callback_pending = 0, .state = 0 }; static void rec_dma_callback(void) { pcm_more_callback_type2 more_ready; int status = 0; if (dma_rec_data.locked != 0) { dma_rec_data.callback_pending = dma_rec_data.state; return; /* Callback is locked out */ } if (dma_rec_bd.mode.status & BD_RROR) status = DMA_REC_ERROR_DMA; more_ready = pcm_callback_more_ready; if (more_ready != NULL && more_ready(status) >= 0) { sdma_channel_run(DMA_REC_CH_NUM); return; } /* Finished recording */ pcm_rec_dma_stop(); pcm_rec_dma_stopped_callback(); } void pcm_rec_lock(void) { if (++dma_rec_data.locked == 1) imx31_regclr32(&SSI_SIER1, SSI_SIER_RDMAE); } void pcm_rec_unlock(void) { if (--dma_rec_data.locked == 0 && dma_rec_data.state != 0) { int oldstatus = disable_irq_save(); int pending = dma_rec_data.callback_pending; dma_rec_data.callback_pending = 0; SSI_SIER1 |= SSI_SIER_RDMAE; restore_irq(oldstatus); /* Should an interrupt be forced instead? The upper pcm layer can * call consumer's callback in thread context so technically this is * acceptable. */ if (pending != 0) rec_dma_callback(); } } void pcm_record_more(void *start, size_t size) { start = (void *)(((unsigned long)start + 3) & ~3); size &= ~3; /* Invalidate - buffer must be coherent */ dump_dcache_range(start, size); start = (void *)addr_virt_to_phys((unsigned long)start); pcm_rec_peak_addr = start; dma_rec_bd.buf_addr = start; dma_rec_bd.mode.count = size; dma_rec_bd.mode.command = TRANSFER_16BIT; dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; } void pcm_rec_dma_stop(void) { /* Stop receiving data */ sdma_channel_stop(DMA_REC_CH_NUM); imx31_regclr32(&SSI_SIER1, SSI_SIER_RDMAE); SSI_SCR1 &= ~SSI_SCR_RE; /* Disable RX */ SSI_SRCR1 &= ~SSI_SRCR_RFEN0; /* Disable RX FIFO */ /* Set state before pending to prevent race with interrupt */ /* Do not enable DMA requests on unlock */ dma_rec_data.state = 0; dma_rec_data.callback_pending = 0; } void pcm_rec_dma_start(void *addr, size_t size) { pcm_rec_dma_stop(); addr = (void *)(((unsigned long)addr + 3) & ~3); size &= ~3; if (size <= 0) return; if (!sdma_channel_reset(DMA_REC_CH_NUM)) return; /* Invalidate - buffer must be coherent */ dump_dcache_range(addr, size); addr = (void *)addr_virt_to_phys((unsigned long)addr); pcm_rec_peak_addr = addr; dma_rec_bd.buf_addr = addr; dma_rec_bd.mode.count = size; dma_rec_bd.mode.command = TRANSFER_16BIT; dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR; dma_rec_data.state = 1; SSI_SRCR1 |= SSI_SRCR_RFEN0; /* Enable RX FIFO */ /* Ensure clear FIFO */ while (SSI_SFCSR1 & SSI_SFCSR_RFCNT0) SSI_SRX0_1; /* Enable receive */ SSI_SCR1 |= SSI_SCR_RE; sdma_channel_run(DMA_REC_CH_NUM); } void pcm_rec_dma_close(void) { pcm_rec_dma_stop(); sdma_channel_close(DMA_REC_CH_NUM); } void pcm_rec_dma_init(void) { pcm_rec_dma_stop(); /* Init channel information */ dma_rec_cd.bd_count = 1; dma_rec_cd.callback = rec_dma_callback; dma_rec_cd.shp_addr = SDMA_PER_ADDR_SSI1_RX1; dma_rec_cd.wml = SDMA_SSI_RXFIFO_WML*2; dma_rec_cd.per_type = SDMA_PER_SSI; dma_rec_cd.tran_type = SDMA_TRAN_PER_2_EMI; dma_rec_cd.event_id1 = SDMA_REQ_SSI1_RX1; sdma_channel_init(DMA_REC_CH_NUM, &dma_rec_cd, &dma_rec_bd); sdma_channel_set_priority(DMA_REC_CH_NUM, DMA_REC_CH_PRIORITY); } const void * pcm_rec_dma_get_peak_buffer(int *count) { static unsigned long pda DEVBSS_ATTR; unsigned long buf, addr, end, bufend; int oldstatus; /* read burst dma destination address register in channel context */ sdma_read_words(&pda, CHANNEL_CONTEXT_ADDR(DMA_REC_CH_NUM)+0x0a, 1); oldstatus = disable_irq_save(); end = pda; buf = (unsigned long)dma_rec_bd.buf_addr; addr = (unsigned long)pcm_rec_peak_addr; bufend = buf + dma_rec_bd.mode.count; restore_irq(oldstatus); /* Be addresses are coherent (no buffer change during read) */ if (addr >= buf && addr < bufend && end >= buf && end < bufend) { *count = (end >> 2) - (addr >> 2); return (void *)(addr & ~3); } *count = 0; return NULL; } #endif /* HAVE_RECORDING */