/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Heikki Hannikainen, Uwe Freese * Revisions copyright (C) 2005 by Gerald Van Baren * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "kernel.h" #include "thread.h" #include "debug.h" #include "adc.h" #include "string.h" #include "storage.h" #include "power.h" #include "audio.h" #include "mp3_playback.h" #include "usb.h" #include "powermgmt.h" #include "backlight.h" #include "lcd.h" #include "rtc.h" #if CONFIG_TUNER #include "fmradio.h" #endif #include "sound.h" #ifdef HAVE_LCD_BITMAP #include "font.h" #endif #include "logf.h" #include "lcd-remote.h" #ifdef SIMULATOR #include #endif #if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR) #include "lcd-remote-target.h" #endif #if (defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2)) \ && !defined (SIMULATOR) #include "pcf50606.h" #endif /** Shared by sim **/ int last_sent_battery_level = 100; /* battery level (0-100%) */ int battery_percent = -1; void send_battery_level_event(void); #if CONFIG_CHARGING /* State of the charger input as seen by the power thread */ enum charger_input_state_type charger_input_state; /* Power inputs as seen by the power thread */ unsigned int power_thread_inputs; #if CONFIG_CHARGING >= CHARGING_MONITOR /* Charging state (mode) as seen by the power thread */ enum charge_state_type charge_state = DISCHARGING; #endif #endif /* CONFIG_CHARGING */ #ifndef SIMULATOR static int shutdown_timeout = 0; /* * Average battery voltage and charger voltage, filtered via a digital * exponential filter (aka. exponential moving average, scaled): * avgbat = y[n] = (N-1)/N*y[n-1] + x[n]. battery_millivolts = y[n] / N. */ static unsigned int avgbat; /* filtered battery voltage, millivolts */ static unsigned int battery_millivolts; /* default value, mAh */ static int battery_capacity = BATTERY_CAPACITY_DEFAULT; #if BATTERY_TYPES_COUNT > 1 static int battery_type = 0; #else #define battery_type 0 #endif /* Power history: power_history[0] is the newest sample */ unsigned short power_history[POWER_HISTORY_LEN] = {0}; #if CONFIG_CPU == JZ4732 /* FIXME! */ static char power_stack[DEFAULT_STACK_SIZE + POWERMGMT_DEBUG_STACK]; #else static char power_stack[DEFAULT_STACK_SIZE/2 + POWERMGMT_DEBUG_STACK]; #endif static const char power_thread_name[] = "power"; static int poweroff_timeout = 0; static int powermgmt_est_runningtime_min = -1; static bool sleeptimer_active = false; static long sleeptimer_endtick; static long last_event_tick; static int voltage_to_battery_level(int battery_millivolts); static void battery_status_update(void); static int runcurrent(void); void battery_read_info(int *voltage, int *level) { int millivolts = battery_adc_voltage(); if (voltage) *voltage = millivolts; if (level) *level = voltage_to_battery_level(millivolts); } void reset_poweroff_timer(void) { last_event_tick = current_tick; } #if BATTERY_TYPES_COUNT > 1 void set_battery_type(int type) { if (type != battery_type) { if ((unsigned)type >= BATTERY_TYPES_COUNT) type = 0; battery_type = type; battery_status_update(); /* recalculate the battery status */ } } #endif void set_battery_capacity(int capacity) { if (capacity > BATTERY_CAPACITY_MAX) capacity = BATTERY_CAPACITY_MAX; if (capacity < BATTERY_CAPACITY_MIN) capacity = BATTERY_CAPACITY_MIN; battery_capacity = capacity; battery_status_update(); /* recalculate the battery status */ } int get_battery_capacity(void) { return battery_capacity; } int battery_time(void) { return powermgmt_est_runningtime_min; } /* Returns battery level in percent */ int battery_level(void) { #ifdef HAVE_BATTERY_SWITCH if ((power_input_status() & POWER_INPUT_BATTERY) == 0) return -1; #endif return battery_percent; } /* Returns filtered battery voltage [millivolts] */ unsigned int battery_voltage(void) { return battery_millivolts; } /* Tells if the battery level is safe for disk writes */ bool battery_level_safe(void) { #if defined(NO_LOW_BATTERY_SHUTDOWN) return true; #elif defined(HAVE_BATTERY_SWITCH) /* Cannot rely upon the battery reading to be valid and the * device could be powered externally. */ return input_millivolts() > battery_level_dangerous[battery_type]; #else return battery_millivolts > battery_level_dangerous[battery_type]; #endif } void set_poweroff_timeout(int timeout) { poweroff_timeout = timeout; } void set_sleep_timer(int seconds) { if (seconds) { sleeptimer_active = true; sleeptimer_endtick = current_tick + seconds * HZ; } else { sleeptimer_active = false; sleeptimer_endtick = 0; } } int get_sleep_timer(void) { if (sleeptimer_active) return (sleeptimer_endtick - current_tick) / HZ; else return 0; } /* look into the percent_to_volt_* table and get a realistic battery level */ static int voltage_to_percent(int voltage, const short* table) { if (voltage <= table[0]) { return 0; } else if (voltage >= table[10]) { return 100; } else { /* search nearest value */ int i = 0; while (i < 10 && table[i+1] < voltage) i++; /* interpolate linear between the smaller and greater value */ /* Tens digit, 10% per entry, ones digit: interpolated */ return i*10 + (voltage - table[i])*10 / (table[i+1] - table[i]); } } /* update battery level and estimated runtime, called once per minute or * when battery capacity / type settings are changed */ static int voltage_to_battery_level(int battery_millivolts) { int level; #if CONFIG_CHARGING >= CHARGING_MONITOR if (charging_state()) { /* battery level is defined to be < 100% until charging is finished */ level = voltage_to_percent(battery_millivolts, percent_to_volt_charge); if (level > 99) level = 99; } else #endif /* CONFIG_CHARGING >= CHARGING_MONITOR */ { /* DISCHARGING or error state */ level = voltage_to_percent(battery_millivolts, percent_to_volt_discharge[battery_type]); } return level; } static void battery_status_update(void) { int level = voltage_to_battery_level(battery_millivolts); /* calculate estimated remaining running time */ #if CONFIG_CHARGING >= CHARGING_MONITOR if (charging_state()) { /* charging: remaining charging time */ powermgmt_est_runningtime_min = (100 - level)*battery_capacity*60 / 100 / (CURRENT_MAX_CHG - runcurrent()); } else #endif /* discharging: remaining running time */ if (battery_millivolts > percent_to_volt_discharge[0][0]) { /* linear extrapolation */ powermgmt_est_runningtime_min = (level + battery_percent)*60 * battery_capacity / 200 / runcurrent(); } if (0 > powermgmt_est_runningtime_min) { powermgmt_est_runningtime_min = 0; } battery_percent = level; send_battery_level_event(); } /* * We shut off in the following cases: * 1) The unit is idle, not playing music * 2) The unit is playing music, but is paused * 3) The battery level has reached shutdown limit * * We do not shut off in the following cases: * 1) The USB is connected * 2) The charger is connected * 3) We are recording, or recording with pause * 4) The radio is playing */ static void handle_auto_poweroff(void) { long timeout = poweroff_timeout*60*HZ; int audio_stat = audio_status(); long tick = current_tick; #if CONFIG_CHARGING /* * Inhibit shutdown as long as the charger is plugged in. If it is * unplugged, wait for a timeout period and then shut down. */ if (charger_input_state == CHARGER || audio_stat == AUDIO_STATUS_PLAY) { last_event_tick = current_tick; } #endif if (!shutdown_timeout && query_force_shutdown()) { backlight_on(); sys_poweroff(); } if (timeout && #if CONFIG_TUNER !(get_radio_status() & FMRADIO_PLAYING) && #endif !usb_inserted() && (audio_stat == 0 || (audio_stat == (AUDIO_STATUS_PLAY | AUDIO_STATUS_PAUSE) && !sleeptimer_active))) { if (TIME_AFTER(tick, last_event_tick + timeout) && TIME_AFTER(tick, storage_last_disk_activity() + timeout)) { sys_poweroff(); } } else if (sleeptimer_active) { /* Handle sleeptimer */ if (TIME_AFTER(tick, sleeptimer_endtick)) { audio_stop(); if (usb_inserted() #if CONFIG_CHARGING && !defined(HAVE_POWEROFF_WHILE_CHARGING) || charger_input_state != NO_CHARGER #endif ) { DEBUGF("Sleep timer timeout. Stopping...\n"); set_sleep_timer(0); backlight_off(); /* Nighty, nighty... */ } else { DEBUGF("Sleep timer timeout. Shutting off...\n"); sys_poweroff(); } } } } /* * Estimate how much current we are drawing just to run. */ static int runcurrent(void) { int current; #if MEM == 8 && !(defined(ARCHOS_ONDIOSP) || defined(ARCHOS_ONDIOFM)) /* assuming 192 kbps, the running time is 22% longer with 8MB */ current = CURRENT_NORMAL*100 / 122; #else current = CURRENT_NORMAL; #endif /* MEM == 8 */ #ifndef BOOTLOADER if (usb_inserted() #ifdef HAVE_USB_POWER #if (CURRENT_USB < CURRENT_NORMAL) || usb_powered() #else && !usb_powered() #endif #endif ) { current = CURRENT_USB; } #if defined(HAVE_BACKLIGHT) if (backlight_get_current_timeout() == 0) /* LED always on */ current += CURRENT_BACKLIGHT; #endif #if defined(HAVE_RECORDING) && defined(CURRENT_RECORD) if (audio_status() & AUDIO_STATUS_RECORD) current += CURRENT_RECORD; #endif #ifdef HAVE_SPDIF_POWER if (spdif_powered()) current += CURRENT_SPDIF_OUT; #endif #ifdef HAVE_REMOTE_LCD if (remote_detect()) current += CURRENT_REMOTE; #endif #endif /* BOOTLOADER */ return current; } /* Check to see whether or not we've received an alarm in the last second */ #ifdef HAVE_RTC_ALARM static void power_thread_rtc_process(void) { if (rtc_check_alarm_flag()) rtc_enable_alarm(false); } #endif /* switch off unit if battery level is too low for reliable operation */ bool query_force_shutdown(void) { #if defined(NO_LOW_BATTERY_SHUTDOWN) return false; #elif defined(HAVE_BATTERY_SWITCH) /* Cannot rely upon the battery reading to be valid and the * device could be powered externally. */ return input_millivolts() < battery_level_shutoff[battery_type]; #else return battery_millivolts < battery_level_shutoff[battery_type]; #endif } #if defined(HAVE_BATTERY_SWITCH) || defined(HAVE_RESET_BATTERY_FILTER) /* * Reset the battery voltage filter to a new value and update the * status. */ void reset_battery_filter(int millivolts) { avgbat = millivolts * BATT_AVE_SAMPLES; battery_millivolts = millivolts; battery_status_update(); } #endif /* HAVE_BATTERY_SWITCH */ /** Generic charging algorithms for common charging types **/ #if CONFIG_CHARGING == 0 || CONFIG_CHARGING == CHARGING_SIMPLE static inline void powermgmt_init_target(void) { /* Nothing to do */ } static inline void charging_algorithm_step(void) { /* Nothing to do */ } static inline void charging_algorithm_close(void) { /* Nothing to do */ } #elif CONFIG_CHARGING == CHARGING_MONITOR /* * Monitor CHARGING/DISCHARGING state. */ static inline void powermgmt_init_target(void) { /* Nothing to do */ } static inline void charging_algorithm_step(void) { switch (charger_input_state) { case CHARGER_PLUGGED: case CHARGER: if (charging_state()) { charge_state = CHARGING; break; } /* Fallthrough */ case CHARGER_UNPLUGGED: case NO_CHARGER: charge_state = DISCHARGING; break; } } static inline void charging_algorithm_close(void) { /* Nothing to do */ } #endif /* CONFIG_CHARGING == * */ #if CONFIG_CHARGING /* Shortcut function calls - compatibility, simplicity. */ /* Returns true if any power input is capable of charging. */ bool charger_inserted(void) { return power_thread_inputs & POWER_INPUT_CHARGER; } /* Returns true if any power input is connected - charging-capable * or not. */ bool power_input_present(void) { return power_thread_inputs & POWER_INPUT; } /* * Detect charger inserted. Return true if the state is transistional. */ static inline bool detect_charger(unsigned int pwr) { /* * Detect charger plugged/unplugged transitions. On a plugged or * unplugged event, we return immediately, run once through the main * loop (including the subroutines), and end up back here where we * transition to the appropriate steady state charger on/off state. */ if (pwr & POWER_INPUT_CHARGER) { switch (charger_input_state) { case NO_CHARGER: case CHARGER_UNPLUGGED: charger_input_state = CHARGER_PLUGGED; break; case CHARGER_PLUGGED: queue_broadcast(SYS_CHARGER_CONNECTED, 0); last_sent_battery_level = 0; charger_input_state = CHARGER; break; case CHARGER: /* Steady state */ return false; } } else { /* charger not inserted */ switch (charger_input_state) { case NO_CHARGER: /* Steady state */ return false; case CHARGER_UNPLUGGED: queue_broadcast(SYS_CHARGER_DISCONNECTED, 0); last_sent_battery_level = 100; charger_input_state = NO_CHARGER; break; case CHARGER_PLUGGED: case CHARGER: charger_input_state = CHARGER_UNPLUGGED; break; } } /* Transitional state */ return true; } #endif /* CONFIG_CHARGING */ /* * Monitor the presence of a charger and perform critical frequent steps * such as running the battery voltage filter. */ static inline void power_thread_step(void) { /* If the power off timeout expires, the main thread has failed to shut down the system, and we need to force a power off */ if (shutdown_timeout) { shutdown_timeout -= POWER_THREAD_STEP_TICKS; if (shutdown_timeout <= 0) power_off(); } #ifdef HAVE_RTC_ALARM power_thread_rtc_process(); #endif /* * Do a digital exponential filter. We don't sample the battery if * the disk is spinning unless we are in USB mode (the disk will most * likely always be spinning in USB mode) or charging. */ if (!storage_disk_is_active() || usb_inserted() #if CONFIG_CHARGING >= CHARGING_MONITOR || charger_input_state == CHARGER #endif ) { avgbat += battery_adc_voltage() - avgbat / BATT_AVE_SAMPLES; /* * battery_millivolts is the millivolt-scaled filtered battery value. */ battery_millivolts = avgbat / BATT_AVE_SAMPLES; /* update battery status every time an update is available */ battery_status_update(); } else if (battery_percent < 8) { /* * If battery is low, observe voltage during disk activity. * Shut down if voltage drops below shutoff level and we are not * using NiMH or Alkaline batteries. */ battery_millivolts = (battery_adc_voltage() + battery_millivolts + 1) / 2; /* update battery status every time an update is available */ battery_status_update(); if (!shutdown_timeout && query_force_shutdown()) { sys_poweroff(); } else { avgbat += battery_millivolts - avgbat / BATT_AVE_SAMPLES; } } } /* power_thread_step */ static void power_thread(void) { long next_power_hist; /* Delay reading the first battery level */ #ifdef MROBE_100 while (battery_adc_voltage() > 4200) /* gives false readings initially */ #endif { sleep(HZ/100); } #if CONFIG_CHARGING /* Initialize power input status before calling other routines. */ power_thread_inputs = power_input_status(); #endif /* initialize the voltages for the exponential filter */ avgbat = battery_adc_voltage() + 15; #ifdef HAVE_DISK_STORAGE /* this adjustment is only needed for HD based */ /* The battery voltage is usually a little lower directly after turning on, because the disk was used heavily. Raise it by 5% */ #if CONFIG_CHARGING if (!charger_inserted()) /* only if charger not connected */ #endif { avgbat += (percent_to_volt_discharge[battery_type][6] - percent_to_volt_discharge[battery_type][5]) / 2; } #endif /* HAVE_DISK_STORAGE */ avgbat = avgbat * BATT_AVE_SAMPLES; battery_millivolts = avgbat / BATT_AVE_SAMPLES; power_history[0] = battery_millivolts; #if CONFIG_CHARGING if (charger_inserted()) { battery_percent = voltage_to_percent(battery_millivolts, percent_to_volt_charge); } else #endif { battery_percent = voltage_to_percent(battery_millivolts, percent_to_volt_discharge[battery_type]); battery_percent += battery_percent < 100; } powermgmt_init_target(); next_power_hist = current_tick + HZ*60; while (1) { #if CONFIG_CHARGING unsigned int pwr = power_input_status(); #ifdef HAVE_BATTERY_SWITCH if ((pwr ^ power_thread_inputs) & POWER_INPUT_BATTERY) { sleep(HZ/10); reset_battery_filter(battery_adc_voltage()); } #endif power_thread_inputs = pwr; if (!detect_charger(pwr)) #endif /* CONFIG_CHARGING */ { /* Steady state */ sleep(POWER_THREAD_STEP_TICKS); /* Do common power tasks */ power_thread_step(); } /* Perform target tasks */ charging_algorithm_step(); if (TIME_BEFORE(current_tick, next_power_hist)) continue; /* increment to ensure there is a record for every minute * rather than go forward from the current tick */ next_power_hist += HZ*60; /* rotate the power history */ memmove(&power_history[1], &power_history[0], sizeof(power_history) - sizeof(power_history[0])); /* insert new value at the start, in millivolts 8-) */ power_history[0] = battery_millivolts; handle_auto_poweroff(); } } /* power_thread */ void powermgmt_init(void) { create_thread(power_thread, power_stack, sizeof(power_stack), 0, power_thread_name IF_PRIO(, PRIORITY_SYSTEM) IF_COP(, CPU)); } /* Various hardware housekeeping tasks relating to shutting down the player */ void shutdown_hw(void) { charging_algorithm_close(); audio_stop(); if (battery_level_safe()) { /* do not save on critical battery */ #ifdef HAVE_LCD_BITMAP glyph_cache_save(NULL); #endif /* Commit pending writes if needed. Even though we don't do write caching, things like flash translation layers may need this to commit scattered pages to there final locations. So far only used for iPod Nano 2G. */ #ifdef HAVE_STORAGE_FLUSH storage_flush(); #endif if (storage_disk_is_active()) storage_spindown(1); } while (storage_disk_is_active()) sleep(HZ/10); #if CONFIG_CODEC == SWCODEC audiohw_close(); #else mp3_shutdown(); #endif /* If HD is still active we try to wait for spindown, otherwise the shutdown_timeout in power_thread_step will force a power off */ while (storage_disk_is_active()) sleep(HZ/10); #ifndef HAVE_LCD_COLOR lcd_set_contrast(0); #endif #ifdef HAVE_REMOTE_LCD lcd_remote_set_contrast(0); #endif #ifdef HAVE_LCD_SHUTDOWN lcd_shutdown(); #endif /* Small delay to make sure all HW gets time to flush. Especially eeprom chips are quite slow and might be still writing the last byte. */ sleep(HZ/4); power_off(); } void sys_poweroff(void) { #ifndef BOOTLOADER logf("sys_poweroff()"); /* If the main thread fails to shut down the system, we will force a power off after an 20 second timeout - 28 seconds if recording */ if (shutdown_timeout == 0) { #if defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2) pcf50606_reset_timeout(); /* Reset timer on first attempt only */ #endif #ifdef HAVE_RECORDING if (audio_status() & AUDIO_STATUS_RECORD) shutdown_timeout += HZ*8; #endif #ifdef IPOD_NANO2G /* The FTL alone may take half a minute to shut down cleanly. */ shutdown_timeout += HZ*60; #else shutdown_timeout += HZ*20; #endif } queue_broadcast(SYS_POWEROFF, 0); #endif /* BOOTLOADER */ } void cancel_shutdown(void) { logf("cancel_shutdown()"); #if defined(IAUDIO_X5) || defined(IAUDIO_M5) || defined(COWON_D2) /* TODO: Move some things to target/ tree */ if (shutdown_timeout) pcf50606_reset_timeout(); #endif shutdown_timeout = 0; } #endif /* SIMULATOR */ /* Send system battery level update events on reaching certain significant levels. This must be called after battery_percent has been updated. */ void send_battery_level_event(void) { static const int levels[] = { 5, 15, 30, 50, 0 }; const int *level = levels; while (*level) { if (battery_percent <= *level && last_sent_battery_level > *level) { last_sent_battery_level = *level; queue_broadcast(SYS_BATTERY_UPDATE, last_sent_battery_level); break; } level++; } }