/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Maurus Cuelenaere * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "jz4740.h" #include "nand.h" #include "nand_id.h" #include "system.h" #include "panic.h" #include "kernel.h" #include "storage.h" #include "string.h" /*#define LOGF_ENABLE*/ #include "logf.h" //#define USE_DMA //#define USE_ECC /* * Standard NAND flash commands */ #define NAND_CMD_READ0 0 #define NAND_CMD_READ1 1 #define NAND_CMD_RNDOUT 5 #define NAND_CMD_PAGEPROG 0x10 #define NAND_CMD_READOOB 0x50 #define NAND_CMD_ERASE1 0x60 #define NAND_CMD_STATUS 0x70 #define NAND_CMD_STATUS_MULTI 0x71 #define NAND_CMD_SEQIN 0x80 #define NAND_CMD_RNDIN 0x85 #define NAND_CMD_READID 0x90 #define NAND_CMD_ERASE2 0xd0 #define NAND_CMD_RESET 0xff /* Extended commands for large page devices */ #define NAND_CMD_READSTART 0x30 #define NAND_CMD_RNDOUTSTART 0xE0 #define NAND_CMD_CACHEDPROG 0x15 /* Status bits */ #define NAND_STATUS_FAIL 0x01 #define NAND_STATUS_FAIL_N1 0x02 #define NAND_STATUS_TRUE_READY 0x20 #define NAND_STATUS_READY 0x40 #define NAND_STATUS_WP 0x80 /* * NAND parameter struct */ struct nand_param { unsigned int bus_width; /* data bus width: 8-bit/16-bit */ unsigned int row_cycle; /* row address cycles: 2/3 */ unsigned int page_size; /* page size in bytes: 512/2048/4096 */ unsigned int oob_size; /* oob size in bytes: 16/64/128 */ unsigned int page_per_block; /* pages per block: 32/64/128 */ }; /* * jz4740_nand.c * * NAND read routine for JZ4740 * * Copyright (c) 2005-2008 Ingenic Semiconductor Inc. * */ static volatile unsigned long nand_address; #define NAND_DATAPORT (nand_address) #define NAND_ADDRPORT (nand_address+0x10000) #define NAND_COMMPORT (nand_address+0x08000) #define ECC_BLOCK 512 #define ECC_POS 6 #define PAR_SIZE 9 #define __nand_cmd(n) (REG8(NAND_COMMPORT) = (n)) #define __nand_addr(n) (REG8(NAND_ADDRPORT) = (n)) #define __nand_data8() (REG8(NAND_DATAPORT)) #define __nand_data16() (REG16(NAND_DATAPORT)) #define __nand_ecc_rs_encoding() \ (REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_ENCODING) #define __nand_ecc_rs_decoding() \ (REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_DECODING) #define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE) #define __nand_ecc_encode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_ENCF)) #define __nand_ecc_decode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_DECF)) /*--------------------------------------------------------------*/ static struct nand_info* chip_info = NULL; static struct nand_info* banks[4]; static unsigned int nr_banks = 1; static unsigned long bank_size; static struct nand_param internal_param; static struct mutex nand_mtx; #ifdef USE_DMA static struct mutex nand_dma_mtx; static struct semaphore nand_dma_complete; #endif static unsigned char temp_page[4096]; /* Max page size */ static inline void jz_nand_wait_ready(void) { register unsigned int timeout = 1000; while ((REG_GPIO_PXPIN(2) & 0x40000000) && timeout--); while (!(REG_GPIO_PXPIN(2) & 0x40000000)); } #ifndef USE_DMA static inline void jz_nand_read_buf16(void *buf, int count) { register int i; register unsigned short *p = (unsigned short *)buf; for (i = 0; i < count; i += 2) *p++ = __nand_data16(); } static inline void jz_nand_read_buf8(void *buf, int count) { register int i; register unsigned char *p = (unsigned char *)buf; for (i = 0; i < count; i++) *p++ = __nand_data8(); } #else static void jz_nand_write_dma(void *source, unsigned int len, int bw) { mutex_lock(&nand_dma_mtx); if(((unsigned int)source < 0xa0000000) && len) dma_cache_wback_inv((unsigned long)source, len); dma_enable(); REG_DMAC_DCCSR(DMA_NAND_CHANNEL) = DMAC_DCCSR_NDES; REG_DMAC_DSAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)source); REG_DMAC_DTAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)NAND_DATAPORT); REG_DMAC_DTCR(DMA_NAND_CHANNEL) = len / 16; REG_DMAC_DRSR(DMA_NAND_CHANNEL) = DMAC_DRSR_RS_AUTO; REG_DMAC_DCMD(DMA_NAND_CHANNEL) = (DMAC_DCMD_SAI| DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DS_16BYTE | (bw == 8 ? DMAC_DCMD_DWDH_8 : DMAC_DCMD_DWDH_16)); REG_DMAC_DCCSR(DMA_NAND_CHANNEL) |= DMAC_DCCSR_EN; /* Enable DMA channel */ #if 1 while( REG_DMAC_DTCR(DMA_NAND_CHANNEL) ) yield(); #else REG_DMAC_DCMD(DMA_NAND_CHANNEL) |= DMAC_DCMD_TIE; /* Enable DMA interrupt */ semaphore_wait(&nand_dma_complete, TIMEOUT_BLOCK); #endif REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_EN; /* Disable DMA channel */ dma_disable(); mutex_unlock(&nand_dma_mtx); } static void jz_nand_read_dma(void *target, unsigned int len, int bw) { mutex_lock(&nand_dma_mtx); if(((unsigned int)target < 0xa0000000) && len) dma_cache_wback_inv((unsigned long)target, len); dma_enable(); REG_DMAC_DCCSR(DMA_NAND_CHANNEL) = DMAC_DCCSR_NDES ; REG_DMAC_DSAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)NAND_DATAPORT); REG_DMAC_DTAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)target); REG_DMAC_DTCR(DMA_NAND_CHANNEL) = len / 4; REG_DMAC_DRSR(DMA_NAND_CHANNEL) = DMAC_DRSR_RS_AUTO; REG_DMAC_DCMD(DMA_NAND_CHANNEL) = (DMAC_DCMD_SAI| DMAC_DCMD_DAI | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BIT | (bw == 8 ? DMAC_DCMD_SWDH_8 : DMAC_DCMD_SWDH_16)); REG_DMAC_DCCSR(DMA_NAND_CHANNEL) |= DMAC_DCCSR_EN; /* Enable DMA channel */ #if 1 while( REG_DMAC_DTCR(DMA_NAND_CHANNEL) ) yield(); #else REG_DMAC_DCMD(DMA_NAND_CHANNEL) |= DMAC_DCMD_TIE; /* Enable DMA interrupt */ semaphore_wait(&nand_dma_complete, TIMEOUT_BLOCK); #endif //REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_EN; /* Disable DMA channel */ dma_disable(); mutex_unlock(&nand_dma_mtx); } void DMA_CALLBACK(DMA_NAND_CHANNEL)(void) { if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_HLT) REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_HLT; if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_AR) REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_AR; if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_CT) REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_CT; if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_TT) REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_TT; semaphore_release(&nand_dma_complete); } #endif /* USE_DMA */ static inline void jz_nand_read_buf(void *buf, int count, int bw) { #ifdef USE_DMA if (bw == 8) jz_nand_read_dma(buf, count, 8); else jz_nand_read_dma(buf, count, 16); #else if (bw == 8) jz_nand_read_buf8(buf, count); else jz_nand_read_buf16(buf, count); #endif } #ifdef USE_ECC /* * Correct 1~9-bit errors in 512-bytes data */ static void jz_rs_correct(unsigned char *dat, int idx, int mask) { int i, j; unsigned short d, d1, dm; i = (idx * 9) >> 3; j = (idx * 9) & 0x7; i = (j == 0) ? (i - 1) : i; j = (j == 0) ? 7 : (j - 1); if (i > 512) return; if (i == 512) d = dat[i - 1]; else d = (dat[i] << 8) | dat[i - 1]; d1 = (d >> j) & 0x1ff; d1 ^= mask; dm = ~(0x1ff << j); d = (d & dm) | (d1 << j); dat[i - 1] = d & 0xff; if (i < 512) dat[i] = (d >> 8) & 0xff; } #endif /* * Read oob */ static int jz_nand_read_oob(unsigned long page_addr, unsigned char *buf, int size) { struct nand_param *nandp = &internal_param; int page_size, row_cycle, bus_width; int col_addr; page_size = nandp->page_size; row_cycle = nandp->row_cycle; bus_width = nandp->bus_width; if (page_size >= 2048) col_addr = page_size; else col_addr = 0; if (page_size >= 2048) /* Send READ0 command */ __nand_cmd(NAND_CMD_READ0); else /* Send READOOB command */ __nand_cmd(NAND_CMD_READOOB); /* Send column address */ __nand_addr(col_addr & 0xff); if (page_size >= 2048) __nand_addr((col_addr >> 8) & 0xff); /* Send page address */ __nand_addr(page_addr & 0xff); __nand_addr((page_addr >> 8) & 0xff); if (row_cycle == 3) __nand_addr((page_addr >> 16) & 0xff); /* Send READSTART command for 2048 ps NAND */ if (page_size >= 2048) __nand_cmd(NAND_CMD_READSTART); /* Wait for device ready */ jz_nand_wait_ready(); /* Read oob data */ jz_nand_read_buf(buf, size, bus_width); return 0; } /* * nand_read_page() * * Input: * * block - block number: 0, 1, 2, ... * page - page number within a block: 0, 1, 2, ... * dst - pointer to target buffer */ static int jz_nand_read_page(unsigned long page_addr, unsigned char *dst) { struct nand_param *nandp = &internal_param; int page_size, oob_size, page_per_block; int row_cycle, bus_width, ecc_count; int i; #ifdef USE_ECC int j; #endif unsigned char *data_buf; unsigned char oob_buf[nandp->oob_size]; if(nand_address == 0) return -1; page_size = nandp->page_size; oob_size = nandp->oob_size; page_per_block = nandp->page_per_block; row_cycle = nandp->row_cycle; bus_width = nandp->bus_width; /* * Read oob data */ jz_nand_read_oob(page_addr, oob_buf, oob_size); /* * Read page data */ /* Send READ0 command */ __nand_cmd(NAND_CMD_READ0); /* Send column address */ __nand_addr(0); if (page_size >= 2048) __nand_addr(0); /* Send page address */ __nand_addr(page_addr & 0xff); __nand_addr((page_addr >> 8) & 0xff); if (row_cycle >= 3) __nand_addr((page_addr >> 16) & 0xff); /* Send READSTART command for 2048 ps NAND */ if (page_size >= 2048) __nand_cmd(NAND_CMD_READSTART); /* Wait for device ready */ jz_nand_wait_ready(); /* Read page data */ data_buf = dst; ecc_count = page_size / ECC_BLOCK; for (i = 0; i < ecc_count; i++) { #ifdef USE_ECC volatile unsigned char *paraddr = (volatile unsigned char *)EMC_NFPAR0; unsigned int stat; /* Enable RS decoding */ REG_EMC_NFINTS = 0x0; __nand_ecc_rs_decoding(); #endif /* Read data */ jz_nand_read_buf((void *)data_buf, ECC_BLOCK, bus_width); #ifdef USE_ECC /* Set PAR values */ for (j = 0; j < PAR_SIZE; j++) *paraddr++ = oob_buf[ECC_POS + i*PAR_SIZE + j]; /* Set PRDY */ REG_EMC_NFECR |= EMC_NFECR_PRDY; /* Wait for completion */ __nand_ecc_decode_sync(); /* Disable decoding */ __nand_ecc_disable(); /* Check result of decoding */ stat = REG_EMC_NFINTS; if (stat & EMC_NFINTS_ERR) { /* Error occurred */ if (stat & EMC_NFINTS_UNCOR) { /* Uncorrectable error occurred */ logf("Uncorrectable ECC error at NAND page address 0x%lx", page_addr); return -1; } else { unsigned int errcnt, index, mask; errcnt = (stat & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT; switch (errcnt) { case 4: index = (REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT; mask = (REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT; jz_rs_correct(data_buf, index, mask); case 3: index = (REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT; mask = (REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT; jz_rs_correct(data_buf, index, mask); case 2: index = (REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT; mask = (REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT; jz_rs_correct(data_buf, index, mask); case 1: index = (REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT; mask = (REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT; jz_rs_correct(data_buf, index, mask); break; default: break; } } } #endif data_buf += ECC_BLOCK; } return 0; } /* * Disable NAND controller */ static void jz_nand_disable(void) { REG_EMC_NFCSR &= ~(EMC_NFCSR_NFCE1 | EMC_NFCSR_NFCE2 | EMC_NFCSR_NFCE3 | EMC_NFCSR_NFCE4 | EMC_NFCSR_NFE1 | EMC_NFCSR_NFE2 | EMC_NFCSR_NFE3 | EMC_NFCSR_NFE4 ); } /* * Enable NAND controller */ static void jz_nand_enable(void) { #if 0 /* OF RE */ REG_GPIO_PXFUNS(1) = 0x1E018000; // __gpio_as_func0() start REG_GPIO_PXSELC(1) = 0x1E018000; // __gpio_as_func0() end REG_GPIO_PXFUNS(2) = 0x3000<<16; // __gpio_as_func0() start REG_GPIO_PXSELC(2) = 0x3000<<16; // __gpio_as_func0() end REG_GPIO_PXFUNC(2) = 0x4000<<16; // __gpio_port_as_input() start REG_GPIO_PXSELC(2) = 0x4000<<16; REG_GPIO_PXDIRC(2) = 0x4000<<16; // __gpio_port_as_input() end REG_GPIO_PXPES(2) = 0x4000<<16; // __gpio_disable_pull() REG_GPIO_PXFUNS(1) = 0x40<<16; // __gpio_as_func0() start REG_GPIO_PXSELC(1) = 0x40<<16; // __gpio_as_func0() end REG_EMC_SMCR1 = (REG_EMC_SMCR1 & 0xFF) | 0x4621200; REG_EMC_SMCR2 = (REG_EMC_SMCR2 & 0xFF) | 0x4621200; REG_EMC_SMCR3 = (REG_EMC_SMCR3 & 0xFF) | 0x4621200; REG_EMC_SMCR4 = (REG_EMC_SMCR4 & 0xFF) | 0x4621200; REG_EMC_SMCR1 = REG_EMC_SMCR2 = REG_EMC_SMCR3 = REG_EMC_SMCR4 = 0x6621200; #else REG_EMC_SMCR1 = REG_EMC_SMCR2 = REG_EMC_SMCR3 = REG_EMC_SMCR4 = 0x04444400; #endif } static void jz_nand_select(int bank) { REG_EMC_NFCSR |= (EMC_NFCSR_NFE(bank+1) | EMC_NFCSR_NFCE(bank+1)); switch(bank) { case 0: nand_address = 0xB8000000; break; case 1: nand_address = 0xB4000000; break; case 2: nand_address = 0xAC000000; break; case 3: nand_address = 0xA8000000; break; } } static void jz_nand_deselect(int bank) { REG_EMC_NFCSR &= ~(EMC_NFCSR_NFE(bank+1) | EMC_NFCSR_NFCE(bank+1)); nand_address = 0; } static int jz_nand_init(void) { unsigned char cData[5]; int i; jz_nand_enable(); for(i=0; i<4; i++) { jz_nand_select(i); __nand_cmd(NAND_CMD_READID); __nand_addr(NAND_CMD_READ0); cData[0] = __nand_data8(); cData[1] = __nand_data8(); cData[2] = __nand_data8(); cData[3] = __nand_data8(); cData[4] = __nand_data8(); jz_nand_deselect(i); logf("NAND chip %d: 0x%x 0x%x 0x%x 0x%x 0x%x", i+1, cData[0], cData[1], cData[2], cData[3], cData[4]); banks[i] = nand_identify(cData); if(banks[i] != NULL) nr_banks++; if(i == 0 && banks[i] == NULL) { panicf("Unknown NAND flash chip: 0x%x 0x%x 0x%x 0x%x 0x%x", cData[0], cData[1], cData[2], cData[3], cData[4]); return -1; /* panicf() doesn't return though */ } } chip_info = banks[0]; internal_param.bus_width = 8; internal_param.row_cycle = chip_info->row_cycles; internal_param.page_size = chip_info->page_size; internal_param.oob_size = chip_info->spare_size; internal_param.page_per_block = chip_info->pages_per_block; bank_size = chip_info->page_size * chip_info->blocks_per_bank / 512 * chip_info->pages_per_block; jz_nand_disable(); return 0; } int nand_init(void) { int res = 0; static bool inited = false; if(!inited) { res = jz_nand_init(); mutex_init(&nand_mtx); #ifdef USE_DMA mutex_init(&nand_dma_mtx); semaphore_init(&nand_dma_complete, 1, 0); system_enable_irq(DMA_IRQ(DMA_NAND_CHANNEL)); #endif inited = true; } return res; } static inline int read_sector(unsigned long start, unsigned int count, void* buf, unsigned int chip_size) { register int ret; if(UNLIKELY(start % chip_size == 0 && count == chip_size)) ret = jz_nand_read_page(start / chip_size, buf); else { ret = jz_nand_read_page(start / chip_size, temp_page); memcpy(buf, temp_page + (start % chip_size), count); } return ret; } int nand_read_sectors(IF_MV(int drive,) unsigned long start, int count, void* buf) { #ifdef HAVE_MULTIVOLUME (void)drive; #endif int ret = 0; unsigned int i, _count, chip_size = chip_info->page_size; unsigned long _start; logf("start"); mutex_lock(&nand_mtx); _start = start << 9; _count = count << 9; if(_count <= chip_size) { jz_nand_select(start / bank_size); ret = read_sector(_start, _count, buf, chip_size); jz_nand_deselect(start / bank_size); } else { for(i=0; i<_count && ret==0; i+=chip_size) { jz_nand_select((start+(i>>9)) / bank_size); ret = read_sector(_start+i, (_count-i < chip_size ? _count-i : chip_size), buf+i, chip_size); jz_nand_deselect((start+(i>>9)) / bank_size); } } mutex_unlock(&nand_mtx); logf("nand_read_sectors(%ld, %d, 0x%x): %d", start, count, (int)buf, ret); return ret; } /* TODO */ int nand_write_sectors(IF_MV(int drive,) unsigned long start, int count, const void* buf) { (void)start; (void)count; (void)buf; #ifdef HAVE_MULTIVOLUME (void)drive; #endif return -1; } #ifdef HAVE_STORAGE_FLUSH int nand_flush(void) { return 0; } #endif void nand_spindown(int seconds) { /* null */ (void)seconds; } void nand_sleep(void) { /* null */ } void nand_spin(void) { /* null */ } void nand_enable(bool on) { /* null - flash controller is enabled/disabled as needed. */ (void)on; } /* TODO */ long nand_last_disk_activity(void) { return 0; } int nand_spinup_time(void) { return 0; } void nand_sleepnow(void) { } #ifdef STORAGE_GET_INFO void nand_get_info(IF_MV(int drive,) struct storage_info *info) { #ifdef HAVE_MULTIVOLUME (void)drive; #endif /* firmware version */ info->revision="0.00"; info->vendor="Rockbox"; info->product="NAND Storage"; /* blocks count */ info->num_sectors = bank_size * nr_banks; info->sector_size = 512; } #endif #ifdef CONFIG_STORAGE_MULTI int nand_num_drives(int first_drive) { /* We don't care which logical drive number(s) we have been assigned */ (void)first_drive; return 1; } #endif