/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2004 by Linus Nielsen Feltzing * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "thread.h" #include #include #include "file.h" #include "debug.h" #include "system.h" #include "font.h" #include "bidi.h" #include "clock-target.h" static bool display_on = false; /* is the display turned on? */ static bool display_flipped = false; /* we need to write a red pixel for correct button reads * (see lcd_button_support()), but that must not happen while the lcd is * updating so block lcd_button_support the during updates */ static volatile bool lcd_busy = false; /* register defines */ #define R_START_OSC 0x00 #define R_DRV_OUTPUT_CONTROL 0x01 #define R_DRV_WAVEFORM_CONTROL 0x02 #define R_ENTRY_MODE 0x03 #define R_COMPARE_REG1 0x04 #define R_COMPARE_REG2 0x05 #define R_DISP_CONTROL1 0x07 #define R_DISP_CONTROL2 0x08 #define R_DISP_CONTROL3 0x09 #define R_FRAME_CYCLE_CONTROL 0x0b #define R_EXT_DISP_IF_CONTROL 0x0c #define R_POWER_CONTROL1 0x10 #define R_POWER_CONTROL2 0x11 #define R_POWER_CONTROL3 0x12 #define R_POWER_CONTROL4 0x13 #define R_RAM_ADDR_SET 0x21 #define R_WRITE_DATA_2_GRAM 0x22 #define R_GAMMA_FINE_ADJ_POS1 0x30 #define R_GAMMA_FINE_ADJ_POS2 0x31 #define R_GAMMA_FINE_ADJ_POS3 0x32 #define R_GAMMA_GRAD_ADJ_POS 0x33 #define R_GAMMA_FINE_ADJ_NEG1 0x34 #define R_GAMMA_FINE_ADJ_NEG2 0x35 #define R_GAMMA_FINE_ADJ_NEG3 0x36 #define R_GAMMA_GRAD_ADJ_NEG 0x37 #define R_GAMMA_AMP_ADJ_RES_POS 0x38 #define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39 #define R_GATE_SCAN_POS 0x40 #define R_VERT_SCROLL_CONTROL 0x41 #define R_1ST_SCR_DRV_POS 0x42 #define R_2ND_SCR_DRV_POS 0x43 #define R_HORIZ_RAM_ADDR_POS 0x44 #define R_VERT_RAM_ADDR_POS 0x45 /* Flip Flag */ #define R_ENTRY_MODE_HORZ_NORMAL 0x7030 #define R_ENTRY_MODE_HORZ_FLIPPED 0x7000 static unsigned short r_entry_mode = R_ENTRY_MODE_HORZ_NORMAL; #define R_ENTRY_MODE_VERT 0x7038 #define R_ENTRY_MODE_SOLID_VERT 0x1038 #define R_ENTRY_MODE_VIDEO_NORMAL 0x7020 #define R_ENTRY_MODE_VIDEO_FLIPPED 0x7010 /* Reverse Flag */ #define R_DISP_CONTROL_NORMAL 0x0004 #define R_DISP_CONTROL_REV 0x0000 static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL; static inline void lcd_delay(int x) { do { asm volatile ("nop\n"); } while (x--); } /* DBOP initialisation, do what OF does */ static void ams3525_dbop_init(void) { CGU_DBOP = (1<<3) | AS3525_DBOP_DIV; DBOP_TIMPOL_01 = 0xe167e167; DBOP_TIMPOL_23 = 0xe167006e; /* short count, 16bit write, read-timing =8 */ DBOP_CTRL = (1<<18)|(1<<12)|(8<<0); GPIOB_AFSEL = 0xfc; GPIOC_AFSEL = 0xff; DBOP_TIMPOL_23 = 0x6000e; /* short count,write enable, 16bit write, read-timing =8 */ DBOP_CTRL = (1<<18)|(1<<16)|(1<<12)|(8<<0); DBOP_TIMPOL_01 = 0x6e167; DBOP_TIMPOL_23 = 0xa167e06f; /* TODO: The OF calls some other functions here, but maybe not important */ } static void lcd_write_single_data16(unsigned short value) { DBOP_CTRL &= ~(1<<14|1<<13); lcd_delay(10); DBOP_DOUT16 = value; while ((DBOP_STAT & (1<<10)) == 0); } static void lcd_write_cmd(int cmd) { /* Write register */ DBOP_TIMPOL_23 = 0xa167006e; lcd_write_single_data16(cmd); /* Wait for fifo to empty */ while ((DBOP_STAT & (1<<10)) == 0); /* Fuze OF has this loop and it seems to help us now also */ int delay=8; while(delay--); DBOP_TIMPOL_23 = 0xa167e06f; } void lcd_write_data(const fb_data* p_bytes, int count) { const long *data; if ((int)p_bytes & 0x3) { /* need to do a single 16bit write beforehand if the address is */ /* not word aligned*/ lcd_write_single_data16(*p_bytes); count--;p_bytes++; } /* from here, 32bit transfers are save */ /* set it to transfer 4*(outputwidth) units at a time, */ /* if bit 12 is set it only does 2 halfwords though */ DBOP_CTRL |= (1<<13|1<<14); data = (long*)p_bytes; while (count > 1) { DBOP_DOUT32 = *data++; count -= 2; /* Wait if push fifo is full */ while ((DBOP_STAT & (1<<6)) != 0); } /* While push fifo is not empty */ while ((DBOP_STAT & (1<<10)) == 0); /* due to the 32bit alignment requirement or uneven count, * we possibly need to do a 16bit transfer at the end also */ if (count > 0) lcd_write_single_data16(*(fb_data*)data); } static void lcd_write_reg(int reg, int value) { fb_data data = value; lcd_write_cmd(reg); lcd_write_single_data16(data); } /*** hardware configuration ***/ void lcd_set_contrast(int val) { (void)val; } void lcd_set_invert_display(bool yesno) { r_disp_control_rev = yesno ? R_DISP_CONTROL_REV : R_DISP_CONTROL_NORMAL; if (display_on) { lcd_write_reg(R_DISP_CONTROL1, 0x0033 | r_disp_control_rev); } } /* turn the display upside down */ void lcd_set_flip(bool yesno) { display_flipped = yesno; r_entry_mode = yesno ? R_ENTRY_MODE_HORZ_FLIPPED : R_ENTRY_MODE_HORZ_NORMAL; } static void lcd_window(int xmin, int ymin, int xmax, int ymax) { if (!display_flipped) { lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (xmax << 8) | xmin); lcd_write_reg(R_VERT_RAM_ADDR_POS, (ymax << 8) | ymin); lcd_write_reg(R_RAM_ADDR_SET, (ymin << 8) | xmin); } else { lcd_write_reg(R_HORIZ_RAM_ADDR_POS, ((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax)); lcd_write_reg(R_VERT_RAM_ADDR_POS, ((LCD_HEIGHT-1 - ymin) << 8) | (LCD_HEIGHT-1 - ymax)); lcd_write_reg(R_RAM_ADDR_SET, ((LCD_HEIGHT-1 - ymin) << 8) | (LCD_WIDTH-1 - xmin)); } } static void _display_on(void) { /* Initialisation the display the same way as the original firmware */ lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */ lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */ /* B/C = 1: n-line inversion form * EOR = 1: polarity inversion occurs by applying an EOR to odd/even * frame select signal and an n-line inversion signal. * FLD = 01b: 1 field interlaced scan, external display iface */ lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700); /* Address counter updated in horizontal direction; left to right; * vertical increment horizontal increment. * data format for 8bit transfer or spi = 65k (5,6,5) */ lcd_write_reg(R_ENTRY_MODE, r_entry_mode); /* Replace data on writing to GRAM */ lcd_write_reg(R_COMPARE_REG1, 0); lcd_write_reg(R_COMPARE_REG2, 0); /* GON = 0, DTE = 0, D1-0 = 00b */ lcd_write_reg(R_DISP_CONTROL1, 0x0000 | r_disp_control_rev); /* Front porch lines: 2; Back porch lines: 2; */ lcd_write_reg(R_DISP_CONTROL2, 0x0203); /* Scan cycle = 0 frames */ lcd_write_reg(R_DISP_CONTROL3, 0x0000); /* 16 clocks */ lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000); /* 18-bit RGB interface (one transfer/pixel) * internal clock operation; * System interface/VSYNC interface */ lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000); /* zero everything*/ lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */ lcd_delay(10); /* initialise power supply */ /* DC12-10 = 000b: Step-up1 = clock/8, * DC02-00 = 000b: Step-up2 = clock/16, * VC2-0 = 010b: VciOUT = 0.87 * VciLVL */ lcd_write_reg(R_POWER_CONTROL2, 0x0002); /* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */ lcd_write_reg(R_POWER_CONTROL3, 0x0008); lcd_delay(40); lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */ /* This register is unknown */ lcd_write_reg(0x56, 0x80f); lcd_write_reg(R_POWER_CONTROL1, 0x4140); lcd_delay(10); lcd_write_reg(R_POWER_CONTROL2, 0x0000); lcd_write_reg(R_POWER_CONTROL3, 0x0013); lcd_delay(20); lcd_write_reg(R_POWER_CONTROL4, 0x6d0e); lcd_delay(20); lcd_write_reg(R_POWER_CONTROL4, 0x6d0e); lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002); lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707); lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182); lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706); lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000); lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f); lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08); lcd_write_reg(R_GATE_SCAN_POS, 0); lcd_write_reg(R_VERT_SCROLL_CONTROL, 0); lcd_window(0, 0, LCD_WIDTH-1, LCD_HEIGHT-1); lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8); lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8); lcd_write_reg(R_DISP_CONTROL1, 0x0033 | r_disp_control_rev); display_on=true; /* must be done before calling lcd_update() */ lcd_update(); } /* LCD init */ void lcd_init_device(void) { ams3525_dbop_init(); /* Init GPIOs the same as the OF */ GPIOA_DIR |= (1<<5); GPIOA_PIN(5) = 0; GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/ lcd_delay(1); GPIOA_PIN(5) = (1<<5); lcd_delay(1); _display_on(); } #if defined(HAVE_LCD_ENABLE) void lcd_enable(bool on) { if(display_on!=on) { if(on) { _display_on(); send_event(LCD_EVENT_ACTIVATION, NULL); } else { display_on=false; lcd_write_reg(R_POWER_CONTROL1, 0x0001); } } } #endif #if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP) bool lcd_active(void) { return display_on; } #endif /*** update functions ***/ static unsigned lcd_yuv_options = 0; /* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */ extern void lcd_write_yuv420_lines(unsigned char const * const src[3], int width, int stride); extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3], int width, int stride, int x_screen, /* To align dither pattern */ int y_screen); void lcd_yuv_set_options(unsigned options) { lcd_yuv_options = options; } static void lcd_window_blit(int xmin, int ymin, int xmax, int ymax) { if (!display_flipped) { lcd_write_reg(R_HORIZ_RAM_ADDR_POS, ((LCD_WIDTH-1 - xmin) << 8) | (LCD_WIDTH-1 - xmax)); lcd_write_reg(R_VERT_RAM_ADDR_POS, (ymax << 8) | ymin); lcd_write_reg(R_RAM_ADDR_SET, (ymin << 8) | (LCD_WIDTH-1 - xmin)); } else { lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (xmax << 8) | xmin); lcd_write_reg(R_VERT_RAM_ADDR_POS, (ymax << 8) | ymin); lcd_write_reg(R_RAM_ADDR_SET, (ymax << 8) | xmin); } } /* Performance function to blit a YUV bitmap directly to the LCD * src_x, src_y, width and height should be even * x, y, width and height have to be within LCD bounds */ void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { unsigned char const * yuv_src[3]; off_t z; lcd_busy = true; /* Sorry, but width and height must be >= 2 or else */ width &= ~1; height >>= 1; z = stride*src_y; yuv_src[0] = src[0] + z + src_x; yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1); yuv_src[2] = src[2] + (yuv_src[1] - src[1]); if (!display_flipped) { lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_NORMAL); } else { lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_FLIPPED); } if (lcd_yuv_options & LCD_YUV_DITHER) { do { lcd_window_blit(y, x, y+1, x+width-1); /* Start write to GRAM */ lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; y+=2; } while (--height > 0); } else { do { lcd_window_blit(y, x, y+1, x+width-1); /* Start write to GRAM */ lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_yuv420_lines(yuv_src, width, stride); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; y+=2; } while (--height > 0); } lcd_busy = false; } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { if (!display_on) return; lcd_busy = true; lcd_write_reg(R_ENTRY_MODE, r_entry_mode); /* Set start position and window */ lcd_window(0, 0, LCD_WIDTH-1, LCD_HEIGHT-1); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_data((fb_data*)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT); lcd_busy = false; } /* lcd_update */ /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { const fb_data *ptr; int ymax, xmax; if (!display_on) return; xmax = x + width; if (xmax >= LCD_WIDTH) xmax = LCD_WIDTH - 1; /* Clip right */ if (x < 0) x = 0; /* Clip left */ if (x >= xmax) return; /* nothing left to do */ width = xmax - x + 1; /* Fix width */ ymax = y + height; if (ymax >= LCD_HEIGHT) ymax = LCD_HEIGHT - 1; /* Clip bottom */ if (y < 0) y = 0; /* Clip top */ if (y >= ymax) return; /* nothing left to do */ lcd_busy = true; lcd_write_reg(R_ENTRY_MODE, r_entry_mode); lcd_window(x, y, xmax, ymax); lcd_write_cmd(R_WRITE_DATA_2_GRAM); ptr = (fb_data*)&lcd_framebuffer[y][x]; height = ymax - y; /* fix height */ do { lcd_write_data(ptr, width); ptr += LCD_WIDTH; } while (--height >= 0); lcd_busy = false; } /* lcd_update_rect */ /* writes one red pixel outside the visible area, needed for correct * dbop reads */ bool lcd_button_support(void) { fb_data data = (0xf<<12); if (lcd_busy) return false; lcd_write_reg(R_ENTRY_MODE, r_entry_mode); /* Set start position and window */ lcd_window(LCD_WIDTH+1, LCD_HEIGHT+1, LCD_WIDTH+2, LCD_HEIGHT+2); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_single_data16(data); return true; }