/* (C) Guenter Geiger */ #include #include #ifdef NT #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif /* ------------------------ hlshelf ----------------------------- */ #ifndef M_PI #define M_PI 3.141593f #endif #define SRATE 44100.0 #define MAX_GAIN 120.0f static t_class *hlshelf_class; typedef struct _hlshelf { t_object x_obj; float s_rate; float s_gain0; float s_gain1; float s_gain2; float s_ltransfq; float s_htransfq; float s_lradians; float s_hradians; } t_hlshelf; int hlshelf_check_stability(t_float fb1, t_float fb2, t_float ff1, t_float ff2, t_float ff3) { float discriminant = fb1 * fb1 + 4 * fb2; if (discriminant < 0) /* imaginary roots -- resonant filter */ { /* they're conjugates so we just check that the product is less than one */ if (fb2 >= -1.0f) goto stable; } else /* real roots */ { /* check that the parabola 1 - fb1 x - fb2 x^2 has a vertex between -1 and 1, and that it's nonnegative at both ends, which implies both roots are in [1-,1]. */ if (fb1 <= 2.0f && fb1 >= -2.0f && 1.0f - fb1 -fb2 >= 0 && 1.0f + fb1 - fb2 >= 0) goto stable; } return 0; stable: return 1; } void hlshelf_check(t_hlshelf *x) { if(x->s_gain0 - x->s_gain1 > MAX_GAIN) { x->s_gain0 = x->s_gain1 + MAX_GAIN; post("setting gain0 to %f",x->s_gain0); } if(x->s_gain1 > MAX_GAIN) { x->s_gain1 = MAX_GAIN; post("setting gain1 to %f",x->s_gain1); } if(x->s_gain2 - x->s_gain1 > MAX_GAIN) { x->s_gain2 = x->s_gain1 + MAX_GAIN; post("setting gain2 to %f",x->s_gain2); } /* constrain: 0 <= x->s_ltransfq < x->s_htransfq. */ x->s_ltransfq = (x->s_ltransfq < x->s_htransfq) ? x->s_ltransfq : x->s_htransfq - 0.5f; if (x->s_ltransfq < 0) x->s_ltransfq = 0.0f; x->s_lradians = M_PI * x->s_ltransfq / x->s_rate; x->s_hradians= M_PI * (0.5f - (x->s_htransfq / x->s_rate)); } void hlshelf_bang(t_hlshelf *x) { t_atom at[6]; float c0, c1, c2, d0, d1, d2; /* output coefs */ float a1, a2, b1, b2, g1, g2; /* temp coefs */ double xf; hlshelf_check(x); /* low shelf */ xf = 0.5 * 0.115129255 * (double)(x->s_gain0 - x->s_gain1); /* ln(10) / 20 = 0.115129255 */ if(xf < -200.) /* exp(x) -> 0 */ { a1 = 1.0f; b1 = -1.0f; g1 = 0.0f; } else { double t = tan(x->s_lradians); double e = exp(xf); double r = t / e; double kr = t * e; a1 = (r - 1) / (r + 1); b1 = (kr - 1) / (kr + 1); g1 = (kr + 1) / (r + 1); } /* high shelf */ xf = 0.5 * 0.115129255 * (double)(x->s_gain2 - x->s_gain1); /* ln(10) / 20 = 0.115129255 */ if(xf < -200.) /* exp(x) -> 0 */ { a2 = -1.0f; b2 = 1.0f; g2 = 0.0f; } else { double t = tan(x->s_hradians); double e = exp(xf); double r = t / e; double kr = t * e; a2 = (1 - r) / (1 + r); b2 = (1 - kr) / (1 + kr); g2 = (1 + kr) / (1 + r); } /* form product */ c0 = g1 * g2 * (float)(exp((double)(x->s_gain1) * 0.05f * 2.302585093f)); ; c1 = a1 + a2; c2 = a1 * a2; d0 = 1.0f; d1 = b1 + b2; d2 = b1 * b2; if (!hlshelf_check_stability(-c1/d0,-c2/d0,d0/d0,d1/d0,d2/d0)) { post("hlshelf: filter unstable -> resetting"); c0=1.;c1=0.;c2=0.; d0=1.;d1=0.;d2=0.; } SETFLOAT(at,-c1/d0); SETFLOAT(at+1,-c2/d0); SETFLOAT(at+2,d0/d0); SETFLOAT(at+3,d1/d0); SETFLOAT(at+4,d2/d0); outlet_list(x->x_obj.ob_outlet,&s_list,5,at); } void hlshelf_float(t_hlshelf *x,t_floatarg f) { x->s_gain0 = f; hlshelf_bang(x); } static void *hlshelf_new(t_symbol* s,t_int argc, t_atom* at) { t_hlshelf *x = (t_hlshelf *)pd_new(hlshelf_class); t_float k0 = atom_getfloat(at); t_float k1 = atom_getfloat(at+1); t_float k2 = atom_getfloat(at+2); t_float f1 = atom_getfloat(at+3); t_float f2 = atom_getfloat(at+4); f1 = atom_getfloat(at); f2 = atom_getfloat(at); if ((f1 == 0.0f && f2 == 0.0f) || f1 > f2){ /* all gains = 0db */ f1 = 150.0f; f2 = 5000.0f; } if (f1 < 0) f1 = 0.0f; if (f2 > SRATE) f2 = .5f*SRATE; x->s_rate = SRATE; /* srate default */ x->s_gain0 = k0; x->s_gain1 = k1; x->s_gain2 = k2; x->s_ltransfq = 0.0f; x->s_htransfq = SRATE/2; x->s_lradians = M_PI * x->s_ltransfq / x->s_rate; x->s_hradians= M_PI * (0.5f - (x->s_htransfq / x->s_rate)); floatinlet_new(&x->x_obj, &x->s_gain1); floatinlet_new(&x->x_obj, &x->s_gain2); floatinlet_new(&x->x_obj, &x->s_ltransfq); floatinlet_new(&x->x_obj, &x->s_htransfq); outlet_new(&x->x_obj, &s_list); return (x); } void hlshelf_setup(void) { hlshelf_class = class_new(gensym("hlshelf"), (t_newmethod)hlshelf_new, 0, sizeof(t_hlshelf), 0, A_GIMME, 0); class_addbang(hlshelf_class,hlshelf_bang); class_addfloat(hlshelf_class,hlshelf_float); } /* (C) Guenter Geiger */ #include #include #ifdef NT #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif /* ------------------------ hlshelf ----------------------------- */ #ifndef M_PI #define M_PI 3.141593f #endif #define SRATE 44100.0 #define MAX_GAIN 120.0f static t_class *hlshelf_class; typedef struct _hlshelf { t_object x_obj; float s_rate; float s_gain0; float s_gain1; float s_gain2; float s_ltransfq; float s_htransfq; float s_lradians; float s_hradians; } t_hlshelf; int hlshelf_check_stability(t_float fb1, t_float fb2, t_float ff1, t_float ff2, t_float ff3) { float discriminant = fb1 * fb1 + 4 * fb2; if (discriminant < 0) /* imaginary roots -- resonant filter */ { /* they're conjugates so we just check that the product is less than one */ if (fb2 >= -1.0f) goto stable; } else /* real roots */ { /* check that the parabola 1 - fb1 x - fb2 x^2 has a vertex between -1 and 1, and that it's nonnegative at both ends, which implies both roots are in [1-,1]. */ if (fb1 <= 2.0f && fb1 >= -2.0f && 1.0f - fb1 -fb2 >= 0 && 1.0f + fb1 - fb2 >= 0) goto stable; } return 0; stable: return 1; } void hlshelf_check(t_hlshelf *x) { if(x->s_gain0 - x->s_gain1 > MAX_GAIN) { x->s_gain0 = x->s_gain1 + MAX_GAIN; post("setting gain0 to %f",x->s_gain0); } if(x->s_gain1 > MAX_GAIN) { x->s_gain1 = MAX_GAIN; post("setting gain1 to %f",x->s_gain1); } if(x->s_gain2 - x->s_gain1 > MAX_GAIN) { x->s_gain2 = x->s_gain1 + MAX_GAIN; post("setting gain2 to %f",x->s_gain2); } /* constrain: 0 <= x->s_ltransfq < x->s_htransfq. */ x->s_ltransfq = (x->s_ltransfq < x->s_htransfq) ? x->s_ltransfq : x->s_htransfq - 0.5f; if (x->s_ltransfq < 0) x->s_ltransfq = 0.0f; x->s_lradians = M_PI * x->s_ltransfq / x->s_rate; x->s_hradians= M_PI * (0.5f - (x->s_htransfq / x->s_rate)); } void hlshelf_bang(t_hlshelf *x) { t_atom at[6]; float c0, c1, c2, d0, d1, d2; /* output coefs */ float a1, a2, b1, b2, g1, g2; /* temp coefs */ double xf; hlshelf_check(x); /* low shelf */ xf = 0.5 * 0.115129255 * (double)(x->s_gain0 - x->s_gain1); /* ln(10) / 20 = 0.115129255 */ if(xf < -200.) /* exp(x) -> 0 */ { a1 = 1.0f; b1 = -1.0f; g1 = 0.0f; } else { double t = tan(x->s_lradians); double e = exp(xf); double r = t / e; double kr = t * e; a1 = (r - 1) / (r + 1); b1 = (kr - 1) / (kr + 1); g1 = (kr + 1) / (r + 1); } /* high shelf */ xf = 0.5 * 0.115129255 * (double)(x->s_gain2 - x->s_gain1); /* ln(10) / 20 = 0.115129255 */ if(xf < -200.) /* exp(x) -> 0 */ { a2 = -1.0f; b2 = 1.0f; g2 = 0.0f; } else { double t = tan(x->s_hradians); double e = exp(xf); double r = t / e; double kr = t * e; a2 = (1 - r) / (1 + r); b2 = (1 - kr) / (1 + kr); g2 = (1 + kr) / (1 + r); } /* form product */ c0 = g1 * g2 * (float)(exp((double)(x->s_gain1) * 0.05f * 2.302585093f)); ; c1 = a1 + a2; c2 = a1 * a2; d0 = 1.0f; d1 = b1 + b2; d2 = b1 * b2; if (!hlshelf_check_stability(-c1/d0,-c2/d0,d0/d0,d1/d0,d2/d0)) { post("hlshelf: filter unstable -> resetting"); c0=1.;c1=0.;c2=0.; d0=1.;d1=0.;d2=0.; } SETFLOAT(at,-c1/d0); SETFLOAT(at+1,-c2/d0); SETFLOAT(at+2,d0/d0); SETFLOAT(at+3,d1/d0); SETFLOAT(at+4,d2/d0); outlet_list(x->x_obj.ob_outlet,&s_list,5,at); } void hlshelf_float(t_hlshelf *x,t_floatarg f) { x->s_gain0 = f; hlshelf_bang(x); } static void *hlshelf_new(t_symbol* s,t_int argc, t_atom* at) { t_hlshelf *x = (t_hlshelf *)pd_new(hlshelf_class); t_float k0 = atom_getfloat(at); t_float k1 = atom_getfloat(at+1); t_float k2 = atom_getfloat(at+2); t_float f1 = atom_getfloat(at+3); t_float f2 = atom_getfloat(at+4); f1 = atom_getfloat(at); f2 = atom_getfloat(at); if ((f1 == 0.0f && f2 == 0.0f) || f1 > f2){ /* all gains = 0db */ f1 = 150.0f; f2 = 5000.0f; } if (f1 < 0) f1 = 0.0f; if (f2 > SRATE) f2 = .5f*SRATE; x->s_rate = SRATE; /* srate default */ x->s_gain0 = k0; x->s_gain1 = k1; x->s_gain2 = k2; x->s_ltransfq = 0.0f; x->s_htransfq = SRATE/2; x->s_lradians = M_PI * x->s_ltransfq / x->s_rate; x->s_hradians= M_PI * (0.5f - (x->s_htransfq / x->s_rate)); floatinlet_new(&x->x_obj, &x->s_gain1); floatinlet_new(&x->x_obj, &x->s_gain2); floatinlet_new(&x->x_obj, &x->s_ltransfq); floatinlet_new(&x->x_obj, &x->s_htransfq); outlet_new(&x->x_obj, &s_list); return (x); } void hlshelf_setup(void) { hlshelf_class = class_new(gensym("hlshelf"), (t_newmethod)hlshelf_new, 0, sizeof(t_hlshelf), 0, A_GIMME, 0); class_addbang(hlshelf_class,hlshelf_bang); class_addfloat(hlshelf_class,hlshelf_float); }