/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Maurus Cuelenaere * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" /*#define LOGF_ENABLE*/ #include "logf.h" #include "system.h" #include "usb_ch9.h" #include "usb_drv.h" #include "usb_core.h" #include "usb-target.h" #include "jz4740.h" #include "thread.h" /* The Jz4740 USB controller is called MUSBHSFC in the datasheet. It also seems to be a more generic controller, with support for up to 15 endpoints (the Jz4740 only has 3). */ #define USB_EP0_IDLE 0 #define USB_EP0_RX 1 #define USB_EP0_TX 2 #define EP_BUF_LEFT(ep) ((ep)->length - (ep)->sent) #define EP_PTR(ep) ((void*)((unsigned int)(ep)->buf + (ep)->sent)) #define EP_NUMBER(ep) (((int)(ep) - (int)&endpoints[0])/sizeof(struct usb_endpoint)) #define EP_NUMBER2(ep) (EP_NUMBER((ep))/2) #define TOTAL_EP() (sizeof(endpoints)/sizeof(struct usb_endpoint)) #define EP_IS_IN(ep) (EP_NUMBER((ep))%2) enum ep_type { ep_control, ep_bulk, ep_interrupt }; struct usb_endpoint { void *buf; unsigned int length; union { unsigned int sent; unsigned int received; }; bool busy; const enum ep_type type; const bool use_dma; bool wait; const unsigned int fifo_addr; unsigned short fifo_size; }; static unsigned char ep0_rx_buf[64]; static unsigned char ep0state = USB_EP0_IDLE; static struct usb_endpoint endpoints[] = { /* buf length sent busy type use_dma wait fifo_addr fifo_size */ {NULL, 0, {0}, false, ep_control, false, false, USB_FIFO_EP0, 64 }, {&ep0_rx_buf, 0, {0}, false, ep_control, false, false, USB_FIFO_EP0, 64 }, {NULL, 0, {0}, false, ep_bulk, false, false, USB_FIFO_EP1, 512}, {NULL, 0, {0}, false, ep_bulk, false, false, USB_FIFO_EP1, 512}, {NULL, 0, {0}, false, ep_interrupt, false, false, USB_FIFO_EP2, 64 } }; static struct wakeup ep_wkup[TOTAL_EP()]; static inline void select_endpoint(int ep) { REG_USB_REG_INDEX = ep; } static void readFIFO(struct usb_endpoint *ep, unsigned int size) { logf("readFIFO(EP%d, %d)", EP_NUMBER2(ep), size); register unsigned char *ptr = (unsigned char*)EP_PTR(ep); register unsigned int *ptr32 = (unsigned int*)ptr; register unsigned int s = size >> 2; register unsigned int x; if(size > 0) { if( ((unsigned int)ptr & 3) == 0 ) { while(s--) *ptr32++ = REG32(ep->fifo_addr); ptr = (unsigned char*)ptr32; } else { while(s--) { x = REG32(ep->fifo_addr); *ptr++ = (x >> 0) & 0xFF; *ptr++ = (x >> 8) & 0xFF; *ptr++ = (x >> 16) & 0xFF; *ptr++ = (x >> 24) & 0xFF; } } s = size & 3; while(s--) *ptr++ = REG8(ep->fifo_addr); } } static void writeFIFO(struct usb_endpoint *ep, unsigned int size) { logf("writeFIFO(EP%d, %d)", EP_NUMBER2(ep), size); register unsigned int *d32 = (unsigned int *)EP_PTR(ep); register unsigned char *d8 = (unsigned char *)EP_PTR(ep); register unsigned int s; if(size > 0) { if(UNLIKELY((unsigned int)d8 & 3)) { s = size; while(s--) REG8(ep->fifo_addr) = *d8++; } else { s = size >> 2; while (s--) REG32(ep->fifo_addr) = *d32++; if( (s = size & 3) ) { d8 = (unsigned char *)d32; while (s--) REG8(ep->fifo_addr) = *d8++; } } } } static void flushFIFO(struct usb_endpoint *ep) { logf("flushFIFO(%d)", EP_NUMBER(ep)); switch (ep->type) { case ep_control: break; case ep_bulk: case ep_interrupt: if(EP_IS_IN(ep)) REG_USB_REG_INCSR |= (USB_INCSR_FF | USB_INCSR_CDT); else REG_USB_REG_OUTCSR |= (USB_OUTCSR_FF | USB_OUTCSR_CDT); break; } } static void EP0_send(void) { struct usb_endpoint* ep = &endpoints[0]; unsigned int length; unsigned char csr0; select_endpoint(0); csr0 = REG_USB_REG_CSR0; if(ep->length == 0) { //REG_USB_REG_CSR0 = (csr0 | USB_CSR0_SVDOUTPKTRDY | USB_CSR0_DATAEND); REG_USB_REG_CSR0 = (csr0 | USB_CSR0_SVDOUTPKTRDY); return; } if(ep->sent == 0) length = (ep->length <= ep->fifo_size ? ep->length : ep->fifo_size); else length = (EP_BUF_LEFT(ep) <= ep->fifo_size ? EP_BUF_LEFT(ep) : ep->fifo_size); writeFIFO(ep, length); ep->sent += length; if(ep->sent >= ep->length) { REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY | USB_CSR0_DATAEND); /* Set data end! */ ep0state = USB_EP0_IDLE; if(ep->wait) wakeup_signal(&ep_wkup[0]); } else REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY); } static void EP0_handler(void) { logf("EP0_handler"); unsigned char csr0; /* Read CSR0 */ select_endpoint(0); csr0 = REG_USB_REG_CSR0; /* Check for SentStall: This bit is set when a STALL handshake is transmitted. The CPU should clear this bit. */ if(csr0 & USB_CSR0_SENTSTALL) { REG_USB_REG_CSR0 = csr0 & ~USB_CSR0_SENTSTALL; ep0state = USB_EP0_IDLE; return; } /* Check for SetupEnd: This bit will be set when a control transaction ends before the DataEnd bit has been set. An interrupt will be generated and the FIFO flushed at this time. The bit is cleared by the CPU writing a 1 to the ServicedSetupEnd bit. */ if(csr0 & USB_CSR0_SETUPEND) { REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDSETUPEND; ep0state = USB_EP0_IDLE; return; } /* Call relevant routines for endpoint 0 state */ if(ep0state == USB_EP0_IDLE) { if(csr0 & USB_CSR0_OUTPKTRDY) /* There is a packet in the fifo */ { readFIFO(&endpoints[1], REG_USB_REG_COUNT0); REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDOUTPKTRDY; /* clear OUTPKTRDY bit */ usb_core_control_request((struct usb_ctrlrequest*)endpoints[1].buf); if(endpoints[1].wait) wakeup_signal(&ep_wkup[1]); } } else if(ep0state == USB_EP0_TX) EP0_send(); } static void EPIN_handler(unsigned int endpoint) { struct usb_endpoint* ep = &endpoints[endpoint*2]; unsigned int length, csr; select_endpoint(endpoint); csr = REG_USB_REG_INCSR; logf("EPIN_handler(%d): 0x%x", endpoint, csr); if(!ep->busy) return; if(csr & USB_INCSR_SENTSTALL) { REG_USB_REG_INCSR = csr & ~USB_INCSR_SENTSTALL; return; } if(ep->use_dma) return; if(csr & USB_INCSR_FFNOTEMPT) { logf("FIFO is not empty! 0x%x", csr); return; } logf("EP%d: %d -> %d", endpoint, ep->sent, ep->length); if(ep->sent == 0) length = (ep->length <= ep->fifo_size ? ep->length : ep->fifo_size); else length = (EP_BUF_LEFT(ep) <= ep->fifo_size ? EP_BUF_LEFT(ep) : ep->fifo_size); writeFIFO(ep, length); REG_USB_REG_INCSR = csr | USB_INCSR_INPKTRDY; ep->sent += length; if(ep->sent >= ep->length) { usb_core_transfer_complete(endpoint, USB_DIR_IN, 0, ep->sent); if(ep->wait) wakeup_signal(&ep_wkup[endpoint*2]); logf("sent complete"); ep->sent = 0; ep->length = 0; ep->buf = NULL; ep->busy = false; } } static void EPOUT_handler(unsigned int endpoint) { struct usb_endpoint* ep = &endpoints[endpoint*2+1]; unsigned int size, csr; if(!ep->busy) return; select_endpoint(endpoint); while((csr = REG_USB_REG_OUTCSR) & (USB_OUTCSR_SENTSTALL|USB_OUTCSR_OUTPKTRDY)) { logf("EPOUT_handler(%d): 0x%x", endpoint, csr); if(csr & USB_OUTCSR_SENTSTALL) { logf("stall sent, flushing fifo.."); flushFIFO(ep); REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_SENTSTALL; return; } if(ep->use_dma) return; if(csr & USB_OUTCSR_OUTPKTRDY) /* There is a packet in the fifo */ { size = REG_USB_REG_OUTCOUNT; readFIFO(ep, size); ep->received += size; /*if(csr & USB_OUTCSR_FFFULL) csr &= ~USB_OUTCSR_FFFULL;*/ REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_OUTPKTRDY; logf("received: %d max length: %d", ep->received, ep->length); if(size < ep->fifo_size || ep->received >= ep->length) { usb_core_transfer_complete(endpoint, USB_DIR_OUT, 0, ep->received); if(ep->wait) wakeup_signal(&ep_wkup[endpoint*2+1]); logf("receive transfer_complete"); ep->received = 0; ep->length = 0; ep->buf = NULL; ep->busy = false; return; } } } } static void EPDMA_handler(int number) { int endpoint=-1; unsigned int size=0; if(number == USB_INTR_DMA_BULKIN) endpoint = (REG_USB_REG_CNTL1 >> 4) & 0xF; else if(number == USB_INTR_DMA_BULKOUT) endpoint = (REG_USB_REG_CNTL2 >> 4) & 0xF; struct usb_endpoint* ep = &endpoints[endpoint]; logf("DMA_BULK%d %d", number, endpoint); if(number == USB_INTR_DMA_BULKIN) size = (unsigned int)ep->buf - REG_USB_REG_ADDR1; else if(number == USB_INTR_DMA_BULKOUT) size = (unsigned int)ep->buf - REG_USB_REG_ADDR2; if(number == USB_INTR_DMA_BULKOUT) { /* Disable DMA */ REG_USB_REG_CNTL2 = 0; __dcache_invalidate_all(); select_endpoint(endpoint); /* Read out last packet manually */ unsigned int lpack_size = REG_USB_REG_OUTCOUNT; if(lpack_size > 0) { ep->buf += ep->length - lpack_size; readFIFO(ep, lpack_size); REG_USB_REG_OUTCSR &= ~USB_OUTCSR_OUTPKTRDY; } } else if(number == USB_INTR_DMA_BULKIN && size % ep->fifo_size) /* If the last packet is less than MAXP, set INPKTRDY manually */ REG_USB_REG_INCSR |= USB_INCSR_INPKTRDY; usb_core_transfer_complete(endpoint, EP_IS_IN(ep) ? USB_DIR_IN : USB_DIR_OUT, 0, ep->length); ep->busy = false; ep->sent = 0; ep->length = 0; ep->buf = NULL; if(ep->wait) wakeup_signal(&ep_wkup[EP_NUMBER(ep)]); } static void setup_endpoint(struct usb_endpoint *ep) { int csr, csrh; select_endpoint(EP_NUMBER2(ep)); ep->busy = false; ep->wait = false; ep->sent = 0; ep->length = 0; if(ep->type == ep_bulk) { if(REG_USB_REG_POWER & USB_POWER_HSMODE) ep->fifo_size = 512; else ep->fifo_size = 64; } if(EP_IS_IN(ep)) { csr = (USB_INCSR_FF | USB_INCSR_CDT); csrh = USB_INCSRH_MODE; if(ep->use_dma) csrh |= (USB_INCSRH_DMAREQENAB | USB_INCSRH_AUTOSET | USB_INCSRH_DMAREQMODE); if(ep->type == ep_interrupt) csrh |= USB_INCSRH_FRCDATATOG; REG_USB_REG_INMAXP = ep->fifo_size; REG_USB_REG_INCSR = csr; REG_USB_REG_INCSRH = csrh; REG_USB_REG_INTRINE |= USB_INTR_EP(EP_NUMBER2(ep)); } else { csr = (USB_OUTCSR_FF | USB_OUTCSR_CDT); csrh = 0; if(ep->type == ep_interrupt) csrh |= USB_OUTCSRH_DNYT; if(ep->use_dma) csrh |= (USB_OUTCSRH_DMAREQENAB | USB_OUTCSRH_AUTOCLR | USB_OUTCSRH_DMAREQMODE); REG_USB_REG_OUTMAXP = ep->fifo_size; REG_USB_REG_OUTCSR = csr; REG_USB_REG_OUTCSRH = csrh; REG_USB_REG_INTROUTE |= USB_INTR_EP(EP_NUMBER2(ep)); } } static void udc_reset(void) { /* From the datasheet: When a reset condition is detected on the USB, the controller performs the following actions: * Sets FAddr to 0. * Sets Index to 0. * Flushes all endpoint FIFOs. * Clears all control/status registers. * Enables all endpoint interrupts. * Generates a Reset interrupt. */ logf("udc_reset()"); unsigned int i; /* EP0 init */ ep0state = USB_EP0_IDLE; /* Disable interrupts */ REG_USB_REG_INTRINE = 0; REG_USB_REG_INTROUTE = 0; REG_USB_REG_INTRUSBE = 0; /* Disable DMA */ REG_USB_REG_CNTL1 = 0; REG_USB_REG_CNTL2 = 0; /* Reset address */ REG_USB_REG_FADDR = 0; /* High speed, softconnect and suspend/resume */ REG_USB_REG_POWER = (USB_POWER_SOFTCONN | USB_POWER_HSENAB | USB_POWER_SUSPENDM); /* Reset EP0 */ select_endpoint(0); REG_USB_REG_CSR0 = (USB_CSR0_SVDOUTPKTRDY | USB_CSR0_SVDSETUPEND); /* Reset other endpoints */ for(i=2; i HZ/16) { usb_status_event(usb_detect()); last_tick = current_tick; } } #endif void usb_enable(bool on) { if(on) usb_core_init(); else usb_core_exit(); } void usb_attach(void) { usb_enable(true); } void usb_drv_init(void) { logf("usb_drv_init()"); /* Set this bit to allow the UDC entering low-power mode when * there are no actions on the USB bus. * UDC still works during this bit was set. */ //__cpm_stop_udc(); __cpm_start_udc(); /* Enable the USB PHY */ REG_CPM_SCR |= CPM_SCR_USBPHY_ENABLE; /* Dis- and reconnect from USB */ REG_USB_REG_POWER &= ~USB_POWER_SOFTCONN; REG_USB_REG_POWER |= USB_POWER_SOFTCONN; udc_reset(); } void usb_drv_exit(void) { logf("usb_drv_exit()"); /* Disable interrupts */ REG_USB_REG_INTRINE = 0; REG_USB_REG_INTROUTE = 0; REG_USB_REG_INTRUSBE = 0; /* Disable DMA */ REG_USB_REG_CNTL1 = 0; REG_USB_REG_CNTL2 = 0; /* Disconnect from USB */ REG_USB_REG_POWER &= ~USB_POWER_SOFTCONN; /* Disable the USB PHY */ REG_CPM_SCR &= ~CPM_SCR_USBPHY_ENABLE; __cpm_stop_udc(); } void usb_drv_set_address(int address) { logf("set adr: %d", address); REG_USB_REG_FADDR = address; } int usb_drv_send_nonblocking(int endpoint, void* ptr, int length) { int flags; endpoint &= 0x7F; logf("usb_drv_send(%d, 0x%x, %d)", endpoint, (int)ptr, length); if(endpoint == EP_CONTROL && ptr == NULL && length == 0) return 0; /* ACK request, handled by the USB controller */ if(endpoint == EP_CONTROL) { flags = disable_irq_save(); endpoints[0].buf = ptr; endpoints[0].sent = 0; endpoints[0].length = length; ep0state = USB_EP0_TX; EP0_send(); restore_irq(flags); return 0; } else { flags = disable_irq_save(); endpoints[endpoint*2].buf = ptr; endpoints[endpoint*2].sent = 0; endpoints[endpoint*2].length = length; endpoints[endpoint*2].busy = true; if(endpoints[endpoint*2].use_dma) { //dma_cache_wback_inv((unsigned long)ptr, length); __dcache_writeback_all(); REG_USB_REG_ADDR1 = PHYSADDR((unsigned long)ptr); REG_USB_REG_COUNT1 = length; REG_USB_REG_CNTL1 = (USB_CNTL_INTR_EN | USB_CNTL_MODE_1 | USB_CNTL_DIR_IN | USB_CNTL_ENA | USB_CNTL_EP(endpoint) | USB_CNTL_BURST_16); } else EPIN_handler(endpoint); restore_irq(flags); return 0; } } int usb_drv_send(int endpoint, void* ptr, int length) { int ret; endpoint &= 0x7F; if(endpoint == EP_CONTROL && ptr == NULL && length == 0) return 0; /* ACK request, handled by the USB controller */ endpoints[endpoint*2].wait = true; ret = usb_drv_send_nonblocking(endpoint, ptr, length); wakeup_wait(&ep_wkup[endpoint*2], TIMEOUT_BLOCK); endpoints[endpoint*2].wait = false; return ret; } int usb_drv_recv(int endpoint, void* ptr, int length) { int flags; endpoint &= 0x7F; logf("usb_drv_recv(%d, 0x%x, %d)", endpoint, (int)ptr, length); if(endpoint == EP_CONTROL && ptr == NULL && length == 0) return 0; /* ACK request, handled by the USB controller */ else { flags = disable_irq_save(); endpoints[endpoint*2+1].buf = ptr; endpoints[endpoint*2+1].received = 0; endpoints[endpoint*2+1].length = length; endpoints[endpoint*2+1].busy = true; if(endpoints[endpoint*2+1].use_dma) { //dma_cache_wback_inv((unsigned long)ptr, length); __dcache_writeback_all(); REG_USB_REG_ADDR2 = PHYSADDR((unsigned long)ptr); REG_USB_REG_COUNT2 = length; REG_USB_REG_CNTL2 = (USB_CNTL_INTR_EN | USB_CNTL_MODE_1 | USB_CNTL_ENA | USB_CNTL_EP(endpoint) | USB_CNTL_BURST_16); } else EPOUT_handler(endpoint); restore_irq(flags); return 0; } } void usb_drv_set_test_mode(int mode) { logf("usb_drv_set_test_mode(%d)", mode); switch(mode) { case 0: REG_USB_REG_TESTMODE &= ~USB_TEST_ALL; break; case 1: REG_USB_REG_TESTMODE |= USB_TEST_J; break; case 2: REG_USB_REG_TESTMODE |= USB_TEST_K; break; case 3: REG_USB_REG_TESTMODE |= USB_TEST_SE0NAK; break; case 4: REG_USB_REG_TESTMODE |= USB_TEST_PACKET; break; } } int usb_drv_port_speed(void) { return (REG_USB_REG_POWER & USB_POWER_HSMODE) ? 1 : 0; } void usb_drv_cancel_all_transfers(void) { logf("usb_drv_cancel_all_transfers()"); unsigned int i, flags; flags = disable_irq_save(); for(i=0; i= 2) endpoints[i].buf = NULL; endpoints[i].sent = 0; endpoints[i].length = 0; select_endpoint(i/2); flushFIFO(&endpoints[i]); } restore_irq(flags); ep0state = USB_EP0_IDLE; } void usb_drv_release_endpoint(int ep) { (void)ep; logf("usb_drv_release_endpoint(%d, %s)", (ep & 0x7F), (ep >> 7) ? "IN" : "OUT"); } int usb_drv_request_endpoint(int type, int dir) { logf("usb_drv_request_endpoint(%d, %s)", type, (dir == USB_DIR_IN) ? "IN" : "OUT"); dir &= USB_ENDPOINT_DIR_MASK; type &= USB_ENDPOINT_XFERTYPE_MASK; /* There are only 3+2 endpoints, so hardcode this ... */ switch(type) { case USB_ENDPOINT_XFER_BULK: if(dir == USB_DIR_IN) return (1 | USB_DIR_IN); else return (1 | USB_DIR_OUT); case USB_ENDPOINT_XFER_INT: if(dir == USB_DIR_IN) return (2 | USB_DIR_IN); default: return -1; } }