/* * Fixed Point IMDCT * Copyright (c) 2002 The FFmpeg Project. * Copyright (c) 2010 Dave Hooper, Mohamed Tarek, Michael Giacomelli * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "codeclib.h" #include "mdct.h" #include "asm_arm.h" #include "asm_mcf5249.h" #include "codeclib_misc.h" #include "mdct_lookup.h" #ifndef ICODE_ATTR_TREMOR_MDCT #define ICODE_ATTR_TREMOR_MDCT ICODE_ATTR #endif /** * Compute the middle half of the inverse MDCT of size N = 2^nbits * thus excluding the parts that can be derived by symmetry * @param output N/2 samples * @param input N/2 samples * * NOTE - CANNOT CURRENTLY OPERATE IN PLACE (input and output must * not overlap or intersect at all) */ void ff_imdct_half(unsigned int nbits, fixed32 *output, const fixed32 *input) ICODE_ATTR_TREMOR_MDCT; void ff_imdct_half(unsigned int nbits, fixed32 *output, const fixed32 *input) { int n8, n4, n2, n, j; const fixed32 *in1, *in2; n = 1 << nbits; n2 = n >> 1; n4 = n >> 2; n8 = n >> 3; FFTComplex *z = (FFTComplex *)output; /* pre rotation */ in1 = input; in2 = input + n2 - 1; /* revtab comes from the fft; revtab table is sized for N=4096 size fft = 2^12. The fft is size N/4 so s->nbits-2, so our shift needs to be (12-(nbits-2)) */ const int revtab_shift = (14- nbits); /* bitreverse reorder the input and rotate; result here is in OUTPUT ... */ /* (note that when using the current split radix, the bitreverse ordering is complex, meaning that this reordering cannot easily be done in-place) */ /* Using the following pdf, you can see that it is possible to rearrange the 'classic' pre/post rotate with an alternative one that enables us to use fewer distinct twiddle factors. http://www.eurasip.org/Proceedings/Eusipco/Eusipco2006/papers/1568980508.pdf For prerotation, the factors are just sin,cos(2PI*i/N) For postrotation, the factors are sin,cos(2PI*(i+1/4)/N) Therefore, prerotation can immediately reuse the same twiddles as fft (for postrotation it's still a bit complex, we reuse the fft trig tables where we can, or a special table for N=2048, or interpolate between trig tables for N>2048) */ const int32_t *T = sincos_lookup0; const int step = 2<<(12-nbits); const uint16_t * p_revtab=revtab; { const uint16_t * const p_revtab_end = p_revtab + n8; while(LIKELY(p_revtab < p_revtab_end)) { j = (*p_revtab)>>revtab_shift; XNPROD31(*in2, *in1, T[1], T[0], &z[j].re, &z[j].im ); T += step; in1 += 2; in2 -= 2; p_revtab++; j = (*p_revtab)>>revtab_shift; XNPROD31(*in2, *in1, T[1], T[0], &z[j].re, &z[j].im ); T += step; in1 += 2; in2 -= 2; p_revtab++; } } { const uint16_t * const p_revtab_end = p_revtab + n8; while(LIKELY(p_revtab < p_revtab_end)) { j = (*p_revtab)>>revtab_shift; XNPROD31(*in2, *in1, T[0], T[1], &z[j].re, &z[j].im); T -= step; in1 += 2; in2 -= 2; p_revtab++; j = (*p_revtab)>>revtab_shift; XNPROD31(*in2, *in1, T[0], T[1], &z[j].re, &z[j].im); T -= step; in1 += 2; in2 -= 2; p_revtab++; } } /* ... and so fft runs in OUTPUT buffer */ ff_fft_calc_c(nbits-2, z); /* post rotation + reordering. now keeps the result within the OUTPUT buffer */ switch( nbits ) { default: { fixed32 * z1 = (fixed32 *)(&z[0]); fixed32 * z2 = (fixed32 *)(&z[n4-1]); int magic_step = step>>2; int newstep; if(n<=1024) { T = sincos_lookup0 + magic_step; newstep = step>>1; } else { T = sincos_lookup1; newstep = 2; } while(z1>1; t1=T[1]>>1; while(z1>1)); t1 += (v1 = (V[1]>>1)); XNPROD31_R(z1[1], z1[0], t0, t1, r0, i1 ); T+=2; v0 += (t0 = (T[0]>>1)); v1 += (t1 = (T[1]>>1)); XNPROD31_R(z2[1], z2[0], v1, v0, r1, i0 ); z1[0] = -r0; z1[1] = -i0; z2[0] = -r1; z2[1] = -i1; z1+=2; z2-=2; V+=2; } break; } case 13: /* n = 8192 */ { /* weight linear interpolation between sincos_lookup0 and sincos_lookup1 specifically: 25:75 for first twiddle and 75:25 for second twiddle */ const int32_t * V = sincos_lookup1; T = sincos_lookup0; int32_t t0,t1,v0,v1,q0,q1; fixed32 * z1 = (fixed32 *)(&z[0]); fixed32 * z2 = (fixed32 *)(&z[n4-1]); t0 = T[0]; t1=T[1]; while(z1>1); t1 += (q1 = (v1-t1)>>1); XNPROD31_R(z1[1], z1[0], t0, t1, r0, i1 ); t0 = v0-q0; t1 = v1-q1; XNPROD31_R(z2[1], z2[0], t1, t0, r1, i0 ); z1[0] = -r0; z1[1] = -i0; z2[0] = -r1; z2[1] = -i1; z1+=2; z2-=2; T+=2; t0 = T[0]; t1 = T[1]; v0 += (q0 = (t0-v0)>>1); v1 += (q1 = (t1-v1)>>1); XNPROD31_R(z1[1], z1[0], v0, v1, r0, i1 ); v0 = t0-q0; v1 = t1-q1; XNPROD31_R(z2[1], z2[0], v1, v0, r1, i0 ); z1[0] = -r0; z1[1] = -i0; z2[0] = -r1; z2[1] = -i1; z1+=2; z2-=2; V+=2; } break; } } } /** * Compute inverse MDCT of size N = 2^nbits * @param output N samples * @param input N/2 samples * "In-place" processing can be achieved provided that: * [0 .. N/2-1 | N/2 .. N-1 ] * <----input----> * <-----------output-----------> * * The result of ff_imdct_half is to put the 'half' imdct here * * N/2 N-1 * <--half imdct--> * * We want it here for the full imdct: * N/4 3N/4-1 * <--------------> * * In addition we need to apply two symmetries to get the full imdct: * * * * * D is a reflection of C * A is a reflection of B (but with sign flipped) * * We process the symmetries at the same time as we 'move' the half imdct * from [N/2,N-1] to [N/4,3N/4-1] * * TODO: find a way to make ff_imdct_half put the result in [N/4..3N/4-1] * This would require being able to use revtab 'inplace' (since the input * and output of imdct_half would then overlap somewhat) */ void ff_imdct_calc(unsigned int nbits, fixed32 *output, const fixed32 *input) ICODE_ATTR_TREMOR_MDCT; #ifndef CPU_ARM void ff_imdct_calc(unsigned int nbits, fixed32 *output, const fixed32 *input) { const int n = (1<>1); const int n4 = (n>>2); /* tell imdct_half to put the output in [N/2..3N/4-1] i.e. output+n2 */ ff_imdct_half(nbits,output+n2,input); fixed32 * in_r, * in_r2, * out_r, * out_r2; /* Copy BBBB to AAAA, reflected and sign-flipped. Also copy BBBB to its correct destination (from [N/2..3N/4-1] to [N/4..N/2-1]) */ out_r = output; out_r2 = output+n2-8; in_r = output+n2+n4-8; while(out_r <- ^b ^c -> <- ^d * * #1: copy from ^c to ^a * #2: copy from ^d to ^b * #3: swap ^c and ^d in place */ /* #1 pt1 : load 4 words from ^c. */ t0=in_r[0]; t1=in_r[1]; t2=in_r[2]; t3=in_r[3]; /* #1 pt2 : write to ^a */ out_r[0]=t0;out_r[1]=t1;out_r[2]=t2;out_r[3]=t3; /* #2 pt1 : load 4 words from ^d */ s0=in_r2[0];s1=in_r2[1];s2=in_r2[2];s3=in_r2[3]; /* #2 pt2 : write to ^b */ out_r2[0]=s0;out_r2[1]=s1;out_r2[2]=s2;out_r2[3]=s3; /* #3 pt1 : write words from #2 to ^c */ in_r[0]=s3;in_r[1]=s2;in_r[2]=s1;in_r[3]=s0; /* #3 pt2 : write words from #1 to ^d */ in_r2[0]=t3;in_r2[1]=t2;in_r2[2]=t1;in_r2[3]=t0; in_r += 4; in_r2 -= 4; out_r += 4; out_r2 -= 4; } } #else /* Follows the same structure as the canonical version above */ void ff_imdct_calc(unsigned int nbits, fixed32 *output, const fixed32 *input) { const int n = (1<>1); const int n4 = (n>>2); ff_imdct_half(nbits,output+n2,input); fixed32 * in_r, * in_r2, * out_r, * out_r2; out_r = output; out_r2 = output+n2; in_r = output+n2+n4; while(out_r