// Game_Music_Emu 0.6-pre. http://www.slack.net/~ant/ #include "ay_emu.h" #include "blargg_endian.h" /* Copyright (C) 2006-2009 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" int const stereo = 2; // number of channels for stereo int const silence_max = 6; // seconds int const silence_threshold = 0x10; long const fade_block_size = 512; int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift) const char* const gme_wrong_file_type = "Wrong file type for this emulator"; // TODO: probably don't need detailed errors as to why file is corrupt int const spectrum_clock = 3546900; // 128K Spectrum int const spectrum_period = 70908; //int const spectrum_clock = 3500000; // 48K Spectrum //int const spectrum_period = 69888; int const cpc_clock = 2000000; void clear_track_vars( struct Ay_Emu *this ) { this->current_track = -1; this->out_time = 0; this->emu_time = 0; this->emu_track_ended_ = true; this->track_ended = true; this->fade_start = INT_MAX / 2 + 1; this->fade_step = 1; this->silence_time = 0; this->silence_count = 0; this->buf_remain = 0; /* warning(); // clear warning */ } void Ay_init( struct Ay_Emu *this ) { this->sample_rate = 0; this->mute_mask_ = 0; this->tempo = (int)FP_ONE_TEMPO; this->gain = (int)FP_ONE_GAIN; this->track_count = 0; // defaults this->max_initial_silence = 2; this->ignore_silence = false; this->voice_count = 0; clear_track_vars( this ); this->beeper_output = NULL; disable_beeper( this ); Ay_apu_init( &this->apu ); Z80_init( &this->cpu ); this->silence_lookahead = 6 ; } // Track info // Given pointer to 2-byte offset of data, returns pointer to data, or NULL if // offset is 0 or there is less than min_size bytes of data available. static byte const* get_data( struct file_t const* file, byte const ptr [], int min_size ) { int offset = (int16_t) get_be16( ptr ); int pos = ptr - (byte const*) file->header; int size = file->end - (byte const*) file->header; assert( (unsigned) pos <= (unsigned) size - 2 ); int limit = size - min_size; if ( limit < 0 || !offset || (unsigned) (pos + offset) > (unsigned) limit ) return NULL; return ptr + offset; } static blargg_err_t parse_header( byte const in [], int size, struct file_t* out ) { if ( size < header_size ) return gme_wrong_file_type; out->header = (struct header_t const*) in; out->end = in + size; struct header_t const* h = (struct header_t const*) in; if ( memcmp( h->tag, "ZXAYEMUL", 8 ) ) return gme_wrong_file_type; out->tracks = get_data( out, h->track_info, (h->max_track + 1) * 4 ); if ( !out->tracks ) return "missing track data"; return 0; } long Track_get_length( struct Ay_Emu* this, int n ) { long length = 0; byte const* track_info = get_data( &this->file, this->file.tracks + n * 4 + 2, 6 ); if ( track_info ) length = get_be16( track_info + 4 ) * (1000 / 50); // frames to msec if ( (this->m3u.size > 0) && (n < this->m3u.size) ) { struct entry_t* entry = &this->m3u.entries [n]; length = entry->length; } if ( length <= 0 ) length = 120 * 1000; /* 2 minutes */ return length; } // Setup void change_clock_rate( struct Ay_Emu *this, long rate ) { this->clock_rate_ = rate; Buffer_clock_rate( &this->stereo_buf, rate ); } blargg_err_t Ay_load_mem( struct Ay_Emu *this, byte const in [], int size ) { assert( offsetof (struct header_t,track_info [2]) == header_size ); RETURN_ERR( parse_header( in, size, &this->file ) ); /* if ( file.header->vers > 2 ) warning( "Unknown file version" ); */ this->voice_count = ay_osc_count + 1; // +1 for beeper Ay_apu_volume( &this->apu, ((double)this->gain)/FP_ONE_GAIN); // Setup buffer change_clock_rate( this, spectrum_clock ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); Sound_set_tempo( this, this->tempo ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); this->track_count = this->file.header->max_track + 1; this->m3u.size = 0; return 0; } void set_beeper_output( struct Ay_Emu *this, struct Blip_Buffer* b ) { this->beeper_output = b; if ( b && !this->cpc_mode ) this->beeper_mask = 0x10; else disable_beeper( this ); } void set_voice( struct Ay_Emu *this, int i, struct Blip_Buffer* center ) { if ( i >= ay_osc_count ) set_beeper_output( this, center ); else Ay_apu_set_output( &this->apu, i, center ); } blargg_err_t run_clocks( struct Ay_Emu *this, blip_time_t* duration, int msec ) { #if defined(ROCKBOX) (void) msec; #endif cpu_time_t *end = duration; struct Z80_Cpu* cpu = &this->cpu; Z80_set_time( cpu, 0 ); // Since detection of CPC mode will halve clock rate during the frame // and thus generate up to twice as much sound, we must generate half // as much until mode is known. if ( !(this->spectrum_mode | this->cpc_mode) ) *end /= 2; while ( Z80_time( cpu ) < *end ) { run_cpu( this, min( *end, this->next_play ) ); if ( Z80_time( cpu ) >= this->next_play ) { // next frame this->next_play += this->play_period; if ( cpu->r.iff1 ) { // interrupt enabled if ( this->mem.ram [cpu->r.pc] == 0x76 ) cpu->r.pc++; // advance past HALT instruction cpu->r.iff1 = 0; cpu->r.iff2 = 0; this->mem.ram [--cpu->r.sp] = (byte) (cpu->r.pc >> 8); this->mem.ram [--cpu->r.sp] = (byte) (cpu->r.pc); // fixed interrupt cpu->r.pc = 0x38; Z80_adjust_time( cpu, 12 ); if ( cpu->r.im == 2 ) { // vectored interrupt addr_t addr = cpu->r.i * 0x100 + 0xFF; cpu->r.pc = this->mem.ram [(addr + 1) & 0xFFFF] * 0x100 + this->mem.ram [addr]; Z80_adjust_time( cpu, 6 ); } } } } // End time frame *end = Z80_time( cpu ); this->next_play -= *end; check( this->next_play >= 0 ); Z80_adjust_time( cpu, -*end ); Ay_apu_end_frame( &this->apu, *end ); return 0; } // Emulation void cpu_out_( struct Ay_Emu *this, cpu_time_t time, addr_t addr, int data ) { // Spectrum if ( !this->cpc_mode ) { switch ( addr & 0xFEFF ) { case 0xFEFD: this->spectrum_mode = true; Ay_apu_write_addr( &this->apu, data ); return; case 0xBEFD: this->spectrum_mode = true; Ay_apu_write_data( &this->apu, time, data ); return; } } // CPC if ( !this->spectrum_mode ) { switch ( addr >> 8 ) { case 0xF6: switch ( data & 0xC0 ) { case 0xC0: Ay_apu_write_addr( &this->apu, this->cpc_latch ); goto enable_cpc; case 0x80: Ay_apu_write_data( &this->apu, time, this->cpc_latch ); goto enable_cpc; } break; case 0xF4: this->cpc_latch = data; goto enable_cpc; } } /* dprintf( "Unmapped OUT: $%04X <- $%02X\n", addr, data ); */ return; enable_cpc: if ( !this->cpc_mode ) { this->cpc_mode = true; disable_beeper( this ); change_clock_rate( this, cpc_clock ); Sound_set_tempo( this, this->tempo ); } } blargg_err_t Ay_set_sample_rate( struct Ay_Emu *this, long rate ) { require( !this->sample_rate ); // sample rate can't be changed once set Buffer_init( &this->stereo_buf ); RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) ); // Set buffer bass Buffer_bass_freq( &this->stereo_buf, 160 ); this->sample_rate = rate; return 0; } void Sound_mute_voice( struct Ay_Emu *this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Ay_Emu *this, int mask ) { require( this->sample_rate ); // sample rate must be set first this->mute_mask_ = mask; int i; for ( i = this->voice_count; i--; ) { if ( mask & (1 << i) ) { set_voice( this, i, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buf ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing set_voice( this, i, ch.center ); } } } void Sound_set_tempo( struct Ay_Emu *this, int t ) { require( this->sample_rate ); // sample rate must be set first int const min = (int)(FP_ONE_TEMPO*0.02); int const max = (int)(FP_ONE_TEMPO*4.00); if ( t < min ) t = min; if ( t > max ) t = max; this->tempo = t; int p = spectrum_period; if ( this->clock_rate_ != spectrum_clock ) p = this->clock_rate_ / 50; this->play_period = (blip_time_t) ((p * FP_ONE_TEMPO) / t); } void fill_buf( struct Ay_Emu *this ) ICODE_ATTR;; blargg_err_t Ay_start_track( struct Ay_Emu *this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } this->current_track = track; Buffer_clear( &this->stereo_buf ); byte* const mem = this->mem.ram; memset( mem + 0x0000, 0xC9, 0x100 ); // fill RST vectors with RET memset( mem + 0x0100, 0xFF, 0x4000 - 0x100 ); memset( mem + ram_addr, 0x00, mem_size - ram_addr ); // locate data blocks byte const* const data = get_data( &this->file, this->file.tracks + track * 4 + 2, 14 ); if ( !data ) return "file data missing"; byte const* const more_data = get_data( &this->file, data + 10, 6 ); if ( !more_data ) return "file data missing"; byte const* blocks = get_data( &this->file, data + 12, 8 ); if ( !blocks ) return "file data missing"; // initial addresses unsigned addr = get_be16( blocks ); if ( !addr ) return "file data missing"; unsigned init = get_be16( more_data + 2 ); if ( !init ) init = addr; // copy blocks into memory do { blocks += 2; unsigned len = get_be16( blocks ); blocks += 2; if ( addr + len > mem_size ) { /* warning( "Bad data block size" ); */ len = mem_size - addr; } check( len ); byte const* in = get_data( &this->file, blocks, 0 ); blocks += 2; if ( len > (unsigned) (this->file.end - in) ) { /* warning( "File data missing" ); */ len = this->file.end - in; } memcpy( mem + addr, in, len ); if ( this->file.end - blocks < 8 ) { /* warning( "File data missing" ); */ break; } } while ( (addr = get_be16( blocks )) != 0 ); // copy and configure driver static byte const passive [] = { 0xF3, // DI 0xCD, 0, 0, // CALL init 0xED, 0x5E, // LOOP: IM 2 0xFB, // EI 0x76, // HALT 0x18, 0xFA // JR LOOP }; static byte const active [] = { 0xF3, // DI 0xCD, 0, 0, // CALL init 0xED, 0x56, // LOOP: IM 1 0xFB, // EI 0x76, // HALT 0xCD, 0, 0, // CALL play 0x18, 0xF7 // JR LOOP }; memcpy( mem, passive, sizeof passive ); int const play_addr = get_be16( more_data + 4 ); if ( play_addr ) { memcpy( mem, active, sizeof active ); mem [ 9] = play_addr; mem [10] = play_addr >> 8; } mem [2] = init; mem [3] = init >> 8; mem [0x38] = 0xFB; // Put EI at interrupt vector (followed by RET) // start at spectrum speed change_clock_rate( this, spectrum_clock ); Sound_set_tempo( this, this->tempo ); struct registers_t r; memset( &r, 0, sizeof(struct registers_t) ); r.sp = get_be16( more_data ); r.b.a = r.b.b = r.b.d = r.b.h = data [8]; r.b.flags = r.b.c = r.b.e = r.b.l = data [9]; r.alt.w = r.w; r.ix = r.iy = r.w.hl; memset( this->mem.padding1, 0xFF, sizeof this->mem.padding1 ); int const mirrored = 0x80; // this much is mirrored after end of memory memset( this->mem.ram + mem_size + mirrored, 0xFF, sizeof this->mem.ram - mem_size - mirrored ); memcpy( this->mem.ram + mem_size, this->mem.ram, mirrored ); // some code wraps around (ugh) Z80_reset( &this->cpu, this->mem.padding1, this->mem.padding1 ); Z80_map_mem( &this->cpu, 0, mem_size, this->mem.ram, this->mem.ram ); this->cpu.r = r; this->beeper_delta = (int) (ay_amp_range * 0.8); this->last_beeper = 0; this->next_play = this->play_period; this->spectrum_mode = false; this->cpc_mode = false; this->cpc_latch = 0; set_beeper_output( this, this->beeper_output ); Ay_apu_reset( &this->apu ); // a few tunes rely on channels having tone enabled at the beginning Ay_apu_write_addr( &this->apu, 7 ); Ay_apu_write_data( &this->apu, 0, 0x38 ); this->emu_track_ended_ = false; this->track_ended = false; if ( !this->ignore_silence ) { // play until non-silence or end of track long end; for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; ) { fill_buf( this ); if ( this->buf_remain | (int) this->emu_track_ended_ ) break; } this->emu_time = this->buf_remain; this->out_time = 0; this->silence_time = 0; this->silence_count = 0; } /* return track_ended() ? warning() : 0; */ return 0; } // Tell/Seek blargg_long msec_to_samples( blargg_long msec, long sample_rate ) { blargg_long sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } long Track_tell( struct Ay_Emu *this ) { blargg_long rate = this->sample_rate * stereo; blargg_long sec = this->out_time / rate; return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Ay_Emu *this, long msec ) { blargg_long time = msec_to_samples( msec, this->sample_rate ); if ( time < this->out_time ) RETURN_ERR( Ay_start_track( this, this->current_track ) ); return Track_skip( this, time - this->out_time ); } blargg_err_t play_( struct Ay_Emu *this, long count, sample_t* out ) ICODE_ATTR; blargg_err_t skip_( struct Ay_Emu *this, long count ) { // for long skip, mute sound const long threshold = 30000; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); while ( count > threshold / 2 && !this->emu_track_ended_ ) { RETURN_ERR( play_( this, buf_size, this->buf ) ); count -= buf_size; } Sound_mute_voices( this, saved_mute ); } while ( count && !this->emu_track_ended_ ) { long n = buf_size; if ( n > count ) n = count; count -= n; RETURN_ERR( play_( this, n, this->buf ) ); } return 0; } blargg_err_t Track_skip( struct Ay_Emu *this, long count ) { require( this->current_track >= 0 ); // start_track() must have been called already this->out_time += count; // remove from silence and buf first { long n = min( count, this->silence_count ); this->silence_count -= n; count -= n; n = min( count, this->buf_remain ); this->buf_remain -= n; count -= n; } if ( count && !this->emu_track_ended_ ) { this->emu_time += count; // End track if error if ( skip_( this, count ) ) this->emu_track_ended_ = true; } if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended this->track_ended |= this->emu_track_ended_; return 0; } // Fading void Track_set_fade( struct Ay_Emu *this, long start_msec, long length_msec ) { this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo); this->fade_start = msec_to_samples( start_msec, this->sample_rate ); } // unit / pow( 2.0, (double) x / step ) static int int_log( blargg_long x, int step, int unit ) { int shift = x / step; int fraction = (x - shift * step) * unit / step; return ((unit - fraction) + (fraction >> 1)) >> shift; } void handle_fade( struct Ay_Emu *this, long out_count, sample_t* out ) { int i; for ( i = 0; i < out_count; i += fade_block_size ) { int const shift = 14; int const unit = 1 << shift; int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size, this->fade_step, unit ); if ( gain < (unit >> fade_shift) ) this->track_ended = this->emu_track_ended_ = true; sample_t* io = &out [i]; int count; for ( count = min( fade_block_size, out_count - i ); count; --count ) { *io = (sample_t) ((*io * gain) >> shift); ++io; } } } // Silence detection void emu_play( struct Ay_Emu *this, long count, sample_t* out ) { check( current_track_ >= 0 ); this->emu_time += count; if ( this->current_track >= 0 && !this->emu_track_ended_ ) { if ( play_( this, count, out ) ) this->emu_track_ended_ = true; } else memset( out, 0, count * sizeof *out ); } // number of consecutive silent samples at end static long count_silence( sample_t* begin, long size ) { sample_t first = *begin; *begin = silence_threshold; // sentinel sample_t* p = begin + size; while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { } *begin = first; return size - (p - begin); } // fill internal buffer and check it for silence void fill_buf( struct Ay_Emu *this ) { assert( !this->buf_remain ); if ( !this->emu_track_ended_ ) { emu_play( this, buf_size, this->buf ); long silence = count_silence( this->buf, buf_size ); if ( silence < buf_size ) { this->silence_time = this->emu_time - silence; this->buf_remain = buf_size; return; } } this->silence_count += buf_size; } blargg_err_t Ay_play( struct Ay_Emu *this, long out_count, sample_t* out ) { if ( this->track_ended ) { memset( out, 0, out_count * sizeof *out ); } else { require( this->current_track >= 0 ); require( out_count % stereo == 0 ); assert( this->emu_time >= this->out_time ); // prints nifty graph of how far ahead we are when searching for silence //debug_printf( "%*s \n", int ((emu_time - out_time) * 7 / sample_rate()), "*" ); long pos = 0; if ( this->silence_count ) { // during a run of silence, run emulator at >=2x speed so it gets ahead long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time; while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) ) fill_buf( this ); // fill with silence pos = min( this->silence_count, out_count ); memset( out, 0, pos * sizeof *out ); this->silence_count -= pos; if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate ) { this->track_ended = this->emu_track_ended_ = true; this->silence_count = 0; this->buf_remain = 0; } } if ( this->buf_remain ) { // empty silence buf long n = min( this->buf_remain, out_count - pos ); memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out ); this->buf_remain -= n; pos += n; } // generate remaining samples normally long remain = out_count - pos; if ( remain ) { emu_play( this, remain, out + pos ); this->track_ended |= this->emu_track_ended_; if ( !this->ignore_silence || this->out_time > this->fade_start ) { // check end for a new run of silence long silence = count_silence( out + pos, remain ); if ( silence < remain ) this->silence_time = this->emu_time - silence; if ( this->emu_time - this->silence_time >= buf_size ) fill_buf( this ); // cause silence detection on next play() } } if ( this->out_time > this->fade_start ) handle_fade( this, out_count, out ); } this->out_time += out_count; return 0; } blargg_err_t play_( struct Ay_Emu *this, long count, sample_t* out ) { long remain = count; while ( remain ) { remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buf ); blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate_ / 1000 - 100; RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buf, clocks_emulated ); } } return 0; }