/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Bertrik Sikken * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* This is the fmradio_i2c interface, used by the radio driver to communicate with the radio tuner chip. It is implemented using the generic i2c driver, which does "bit-banged" I2C with a couple of GPIO pins. */ #include "config.h" #include "cpu.h" #include "system.h" #include "kernel.h" #include "tuner.h" #include "generic_i2c.h" #include "fmradio_i2c.h" #include "thread.h" #if defined(SANSA_CLIP) || defined(SANSA_C200V2) #define I2C_SCL_GPIO(x) GPIOB_PIN(x) #define I2C_SDA_GPIO(x) GPIOB_PIN(x) #define I2C_SCL_GPIO_DIR GPIOB_DIR #define I2C_SDA_GPIO_DIR GPIOB_DIR #define I2C_SCL_PIN 4 #define I2C_SDA_PIN 5 #elif defined(SANSA_CLIPV2) || defined(SANSA_CLIPPLUS) \ || defined(SANSA_CLIPZIP) #define I2C_SCL_GPIO(x) GPIOB_PIN(x) #define I2C_SDA_GPIO(x) GPIOB_PIN(x) #define I2C_SCL_GPIO_DIR GPIOB_DIR #define I2C_SDA_GPIO_DIR GPIOB_DIR #define I2C_SCL_PIN 6 #define I2C_SDA_PIN 7 #elif defined(SANSA_M200V4) #define I2C_SCL_GPIO(x) GPIOD_PIN(x) #define I2C_SDA_GPIO(x) GPIOD_PIN(x) #define I2C_SCL_GPIO_DIR GPIOD_DIR #define I2C_SDA_GPIO_DIR GPIOD_DIR #define I2C_SCL_PIN 7 #define I2C_SDA_PIN 6 #elif defined(SANSA_FUZE) || defined(SANSA_E200V2) #define I2C_SCL_GPIO(x) GPIOA_PIN(x) #define I2C_SDA_GPIO(x) GPIOA_PIN(x) #define I2C_SCL_GPIO_DIR GPIOA_DIR #define I2C_SDA_GPIO_DIR GPIOA_DIR #define I2C_SCL_PIN 6 #define I2C_SDA_PIN 7 #elif defined(SANSA_FUZEV2) #define I2C_SCL_GPIO(x) GPIOB_PIN(x) #define I2C_SDA_GPIO(x) GPIOA_PIN(x) #define I2C_SCL_GPIO_DIR GPIOB_DIR #define I2C_SDA_GPIO_DIR GPIOA_DIR #define I2C_SCL_PIN 1 #define I2C_SDA_PIN 0 #else #error no FM I2C GPIOPIN defines #endif static int fm_i2c_bus; static void fm_scl_dir(bool out) { if (out) { I2C_SCL_GPIO_DIR |= 1 << I2C_SCL_PIN; } else { I2C_SCL_GPIO_DIR &= ~(1 << I2C_SCL_PIN); } } static void fm_sda_dir(bool out) { if (out) { I2C_SDA_GPIO_DIR |= 1 << I2C_SDA_PIN; } else { I2C_SDA_GPIO_DIR &= ~(1 << I2C_SDA_PIN); } } static void fm_scl_out(bool level) { if (level) { I2C_SCL_GPIO(I2C_SCL_PIN) = 1 << I2C_SCL_PIN; } else { I2C_SCL_GPIO(I2C_SCL_PIN) = 0; } } static void fm_sda_out(bool level) { if (level) { I2C_SDA_GPIO(I2C_SDA_PIN) = 1 << I2C_SDA_PIN; } else { I2C_SDA_GPIO(I2C_SDA_PIN) = 0; } } static bool fm_scl_in(void) { return I2C_SCL_GPIO(I2C_SCL_PIN); } static bool fm_sda_in(void) { return I2C_SDA_GPIO(I2C_SDA_PIN); } static void fm_delay(int delay) { if (delay != 0) { udelay(delay); } } /* interface towards the generic i2c driver */ static const struct i2c_interface fm_i2c_interface = { .scl_out = fm_scl_out, .scl_dir = fm_scl_dir, .sda_out = fm_sda_out, .sda_dir = fm_sda_dir, .sda_in = fm_sda_in, .scl_in = fm_scl_in, .delay = fm_delay, .delay_hd_sta = 1, .delay_hd_dat = 0, .delay_su_dat = 1, .delay_su_sto = 1, .delay_su_sta = 1, .delay_thigh = 2 }; /* initialise i2c for fmradio */ void fmradio_i2c_init(void) { fm_i2c_bus = i2c_add_node(&fm_i2c_interface); } int fmradio_i2c_write(unsigned char address, const unsigned char* buf, int count) { #ifdef SANSA_FUZEV2 bitclr32(&CCU_IO, 1<<12); #endif int ret = i2c_write_data(fm_i2c_bus, address, -1, buf, count); #ifdef SANSA_FUZEV2 bitset32(&CCU_IO, 1<<12); #endif return ret; } int fmradio_i2c_read(unsigned char address, unsigned char* buf, int count) { #ifdef SANSA_FUZEV2 bitclr32(&CCU_IO, 1<<12); #endif int ret = i2c_read_data(fm_i2c_bus, address, -1, buf, count); #ifdef SANSA_FUZEV2 bitset32(&CCU_IO, 1<<12); #endif return ret; } #ifdef HAVE_RDS_CAP /* Low-level RDS Support */ static struct semaphore rds_sema; static uint32_t rds_stack[DEFAULT_STACK_SIZE/sizeof(uint32_t)]; /* RDS GPIO interrupt handler */ void tuner_isr(void) { /* read and clear the interrupt */ if (GPIOA_MIS & (1<<4)) { semaphore_release(&rds_sema); GPIOA_IC = (1<<4); } } /* Captures RDS data and processes it */ static void NORETURN_ATTR rds_thread(void) { while (true) { semaphore_wait(&rds_sema, TIMEOUT_BLOCK); si4700_rds_process(); } } /* Called with on=true after full radio power up, and with on=false before powering down */ void si4700_rds_powerup(bool on) { GPIOA_IE &= ~(1<<4); /* disable GPIO interrupt */ if (on) { GPIOA_DIR &= ~(1<<4); /* input */ GPIOA_IS &= ~(1<<4); /* edge detect */ GPIOA_IBE &= ~(1<<4); /* only one edge */ GPIOA_IEV &= ~(1<<4); /* falling edge */ GPIOA_IC = (1<<4); /* clear any pending interrupt */ GPIOA_IE |= (1<<4); /* enable GPIO interrupt */ } } /* One-time RDS init at startup */ void si4700_rds_init(void) { semaphore_init(&rds_sema, 1, 0); create_thread(rds_thread, rds_stack, sizeof(rds_stack), 0, "rds" IF_PRIO(, PRIORITY_REALTIME) IF_COP(, CPU)); } #endif /* HAVE_RDS_CAP */