/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Miika Pekkarinen * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include "config.h" #include "debug.h" #include "panic.h" #include #include "pcmbuf.h" #include "pcm_playback.h" #include "logf.h" #ifndef SIMULATOR #include "cpu.h" #endif #include "system.h" #include #include "buffer.h" #include "settings.h" #include "audio.h" #include "dsp.h" #define CHUNK_SIZE 32768 /* Must be a power of 2 */ #define NUM_PCM_BUFFERS 128 #define NUM_PCM_BUFFERS_MASK (NUM_PCM_BUFFERS - 1) /* Watermark level at 1s. */ #define PCMBUF_WATERMARK (NATIVE_FREQUENCY * 4 * 1) /* Audio buffer related settings. */ static long pcmbuf_size = 0; /* Size of the PCM buffer. */ static char *audiobuffer; static long audiobuffer_pos; /* Current audio buffer write index. */ long audiobuffer_free IDATA_ATTR; /* Amount of bytes left in the buffer. */ static long audiobuffer_fillpos; /* Amount audiobuffer_pos will be increased.*/ static char *guardbuf; static void (*pcmbuf_event_handler)(void); /* Crossfade related. */ static int crossfade_mode; static bool crossfade_enabled; static bool crossfade_active; static bool crossfade_init; static int crossfade_pos; static int crossfade_rem; static struct mutex pcmbuf_mutex; /* Crossfade modes. If CFM_CROSSFADE is selected, normal * crossfader will activate. Selecting CFM_FLUSH is a special * operation that only overwrites the pcm buffer without crossfading. */ enum { CFM_CROSSFADE, CFM_MIX, CFM_FLUSH }; static int crossfade_fade_in_amount; static int crossfade_fade_in_rem; /* Structure we can use to queue pcm chunks in memory to be played * by the driver code. */ struct pcmbufdesc { void *addr; int size; /* Call this when the buffer has been played */ void (*callback)(void); } pcmbuffers[NUM_PCM_BUFFERS] IDATA_ATTR; /* Do we really need IRAM for this? */ static int pcmbuf_read_index; static int pcmbuf_write_index; static int pcmbuf_unplayed_bytes IDATA_ATTR; static int pcmbuf_mix_used_bytes; static int pcmbuf_watermark; static void pcmbuf_under_watermark(int bytes_left); static int pcmbuf_num_used_buffers(void); static void (*position_callback)(int size); static int last_chunksize; static long mixpos = 0; static bool low_latency_mode = false; #ifdef HAVE_ADJUSTABLE_CPU_FREQ static bool boost_mode; void pcmbuf_boost(bool state) { static bool boost_state = false; if (crossfade_init || crossfade_active || boost_mode) return ; if (state != boost_state) { cpu_boost(state); boost_state = state; } } void pcmbuf_set_boost_mode(bool state) { if (state) pcmbuf_boost(true); boost_mode = state; } #endif static int pcmbuf_num_used_buffers(void) { return (pcmbuf_write_index - pcmbuf_read_index) & NUM_PCM_BUFFERS_MASK; } static void pcmbuf_callback(unsigned char** start, long* size) ICODE_ATTR; static void pcmbuf_callback(unsigned char** start, long* size) { struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index]; if (position_callback) { position_callback(last_chunksize); } pcmbuf_unplayed_bytes -= last_chunksize; audiobuffer_free += last_chunksize; if(desc->size == 0) { /* The buffer is finished, call the callback function */ if(desc->callback) desc->callback(); /* Advance to the next buffer */ pcmbuf_read_index = (pcmbuf_read_index + 1) & NUM_PCM_BUFFERS_MASK; desc = &pcmbuffers[pcmbuf_read_index]; } if(pcmbuf_num_used_buffers()) { *start = desc->addr; *size = desc->size; /* Update the buffer descriptor */ desc->addr += desc->size; desc->size = 0; } else { /* No more buffers */ *size = 0; if (pcmbuf_event_handler) pcmbuf_event_handler(); } last_chunksize = *size; if(pcmbuf_unplayed_bytes <= pcmbuf_watermark) { pcmbuf_under_watermark(pcmbuf_unplayed_bytes); } } void pcmbuf_set_position_callback(void (*callback)(int size)) { position_callback = callback; } static void pcmbuf_set_watermark_bytes(int numbytes) { pcmbuf_watermark = numbytes; } bool pcmbuf_add_chunk(void *addr, int size, void (*callback)(void)) { /* We don't use the last buffer, since we can't see the difference between the full and empty condition */ if(pcmbuf_num_used_buffers() < (NUM_PCM_BUFFERS - 2)) { pcmbuffers[pcmbuf_write_index].addr = addr; pcmbuffers[pcmbuf_write_index].size = size; pcmbuffers[pcmbuf_write_index].callback = callback; pcmbuf_write_index = (pcmbuf_write_index+1) & NUM_PCM_BUFFERS_MASK; pcmbuf_unplayed_bytes += size; pcmbuf_mix_used_bytes = MAX(0, pcmbuf_mix_used_bytes - size); return true; } else return false; } static void pcmbuf_under_watermark(int bytes_left) { /* Fill audio buffer by boosting cpu */ pcmbuf_boost(true); if (bytes_left <= CHUNK_SIZE * 2 && crossfade_mode != CFM_FLUSH) crossfade_active = false; } void pcmbuf_add_event(void (*event_handler)(void)) { pcmbuf_event_handler = event_handler; } unsigned int pcmbuf_get_latency(void) { int latency = (pcmbuf_unplayed_bytes + pcm_get_bytes_waiting()) * 1000 / 4 / 44100; return latency<0?0:latency; } void pcmbuf_set_low_latency(bool state) { low_latency_mode = state; } bool pcmbuf_is_lowdata(void) { if (!pcm_is_playing() || pcm_is_paused() || crossfade_init || crossfade_active) return false; if (pcmbuf_unplayed_bytes < pcmbuf_watermark - CHUNK_SIZE) return true; return false; } bool pcmbuf_crossfade_init(bool manual_skip) { if (pcmbuf_size - audiobuffer_free < CHUNK_SIZE * 8 || !pcmbuf_is_crossfade_enabled() || crossfade_active || crossfade_init || low_latency_mode) { pcmbuf_flush_audio(); return false; } logf("pcmbuf_crossfade_init"); pcmbuf_boost(true); /* Don't enable mix mode when skipping tracks manually. */ if (manual_skip) crossfade_mode = CFM_CROSSFADE; else crossfade_mode = global_settings.crossfade_fade_out_mixmode ? CFM_MIX : CFM_CROSSFADE; crossfade_init = true; return true; } void pcmbuf_play_stop(void) { mutex_lock(&pcmbuf_mutex); /** Prevent a very tiny pop from happening by muting audio * until dma has been initialized. */ pcm_mute(true); pcm_play_stop(); pcm_mute(false); last_chunksize = 0; pcmbuf_unplayed_bytes = 0; pcmbuf_mix_used_bytes = 0; pcmbuf_read_index = 0; pcmbuf_write_index = 0; audiobuffer_pos = 0; audiobuffer_fillpos = 0; audiobuffer_free = pcmbuf_size; crossfade_init = false; crossfade_active = false; pcmbuf_set_boost_mode(false); pcmbuf_boost(false); mutex_unlock(&pcmbuf_mutex); } void pcmbuf_init(long bufsize) { mutex_init(&pcmbuf_mutex); pcmbuf_size = bufsize; audiobuffer = (char *)&audiobuf[(audiobufend - audiobuf) - pcmbuf_size - PCMBUF_GUARD]; guardbuf = &audiobuffer[pcmbuf_size]; position_callback = NULL; pcmbuf_event_handler = NULL; pcmbuf_play_stop(); } long pcmbuf_get_bufsize(void) { return pcmbuf_size; } /** Initialize a track switch so that audio playback will not stop but * the switch to next track would happen as soon as possible. */ void pcmbuf_flush_audio(void) { if (crossfade_init || crossfade_active || !pcm_is_playing()) { pcmbuf_play_stop(); return ; } pcmbuf_boost(true); crossfade_mode = CFM_FLUSH; crossfade_init = true; } /* Force playback. */ void pcmbuf_play_start(void) { if (!pcm_is_playing() && pcmbuf_unplayed_bytes) { /** Prevent a very tiny pop from happening by muting audio * until dma has been initialized. */ pcm_mute(true); pcm_play_data(pcmbuf_callback); /* Now unmute the audio. */ pcm_mute(false); } } /** * Commit samples waiting to the pcm buffer. */ void pcmbuf_flush_fillpos(void) { int copy_n; mutex_lock(&pcmbuf_mutex); copy_n = MIN(audiobuffer_fillpos, CHUNK_SIZE); if (copy_n) { while (!pcmbuf_add_chunk(&audiobuffer[audiobuffer_pos], copy_n, pcmbuf_event_handler)) { pcmbuf_boost(false); sleep(1); /* This is a fatal error situation that should never happen. */ if (!pcm_is_playing()) { logf("pcm_flush_fillpos error"); pcmbuf_play_start(); mutex_unlock(&pcmbuf_mutex); return ; } } position_callback = NULL; pcmbuf_event_handler = NULL; audiobuffer_pos += copy_n; if (audiobuffer_pos >= pcmbuf_size) audiobuffer_pos -= pcmbuf_size; audiobuffer_free -= copy_n; audiobuffer_fillpos -= copy_n; } mutex_unlock(&pcmbuf_mutex); } /** * Completely process the crossfade fade out effect with current pcm buffer. */ static void crossfade_process_buffer( int fade_in_delay, int fade_out_delay, int fade_out_rem) { int amount; int pos; short *buf; /* Fade out the entire current buffer according to settings. */ amount = fade_out_rem; pos = crossfade_pos + fade_out_delay*2; while (fade_out_rem > 0 && crossfade_mode == CFM_CROSSFADE) { int blocksize = MIN(8192, fade_out_rem); int factor = (fade_out_rem<<8)/amount; /* Prevent pcmbuffer from wrapping. */ if (pos >= pcmbuf_size) pos -= pcmbuf_size; blocksize = MIN((pcmbuf_size - pos)/2, blocksize); buf = (short *)&audiobuffer[pos]; fade_out_rem -= blocksize; pos += blocksize * 2; while (blocksize > 0) { *buf = (*buf * factor) >> 8; *buf++; blocksize--; } //yield(); } /* And finally set the mixing position where we should start fading in. */ crossfade_rem -= fade_in_delay; crossfade_pos += fade_in_delay*2; if (crossfade_pos >= pcmbuf_size) crossfade_pos -= pcmbuf_size; logf("process done!"); } /** * Initializes crossfader, calculates all necessary parameters and * performs fade-out with the pcm buffer. */ static void crossfade_start(void) { int bytesleft = pcmbuf_unplayed_bytes; int fade_out_rem = 0, fade_out_delay = 0; int fade_in_delay = 0; crossfade_init = 0; if (bytesleft < NATIVE_FREQUENCY * 4 / 2) { logf("crossfade rejected"); pcmbuf_play_stop(); return ; } logf("crossfade_start"); pcmbuf_boost(true); while (audiobuffer_fillpos != 0) pcmbuf_flush_fillpos(); crossfade_active = true; crossfade_pos = audiobuffer_pos; switch (crossfade_mode) { case CFM_MIX: case CFM_CROSSFADE: /* Initialize the crossfade buffer size. */ crossfade_rem = (bytesleft - (NATIVE_FREQUENCY / 4))/2; /* Get fade out delay from settings. */ fade_out_delay = NATIVE_FREQUENCY * global_settings.crossfade_fade_out_delay * 2; /* Get fade out duration from settings. */ fade_out_rem = NATIVE_FREQUENCY * global_settings.crossfade_fade_out_duration * 2; /* We want only to modify the last part of the buffer. */ if (crossfade_rem > fade_out_rem + fade_out_delay) crossfade_rem = fade_out_rem + fade_out_delay; /* Truncate fade out duration if necessary. */ if (crossfade_rem < fade_out_rem + fade_out_delay) fade_out_rem -= (fade_out_rem + fade_out_delay) - crossfade_rem; /* Get also fade in duration and delays from settings. */ crossfade_fade_in_rem = NATIVE_FREQUENCY * global_settings.crossfade_fade_in_duration * 2; crossfade_fade_in_amount = crossfade_fade_in_rem; /* We should avoid to divide by zero. */ if (crossfade_fade_in_amount == 0) crossfade_fade_in_amount = 1; fade_in_delay = NATIVE_FREQUENCY * global_settings.crossfade_fade_in_delay * 2; /* Decrease the fade out delay if necessary. */ fade_out_delay += MIN(crossfade_rem - fade_out_rem - fade_out_delay, 0); if (fade_out_delay < 0) fade_out_delay = 0; break ; case CFM_FLUSH: crossfade_rem = (bytesleft - CHUNK_SIZE) /2; crossfade_fade_in_rem = 0; crossfade_fade_in_amount = 0; break ; } crossfade_pos -= crossfade_rem*2; if (crossfade_pos < 0) crossfade_pos += pcmbuf_size; if (crossfade_mode != CFM_FLUSH) { /* Process the fade out part of the crossfade. */ crossfade_process_buffer(fade_in_delay, fade_out_delay, fade_out_rem); } } /** * Fades in samples passed to the function and inserts them * to the pcm buffer. */ static void fade_insert(const short *inbuf, int length) { int copy_n; int factor; int i, samples; short *buf; factor = ((crossfade_fade_in_amount-crossfade_fade_in_rem) <<8)/crossfade_fade_in_amount; while (audiobuffer_free < length + audiobuffer_fillpos + CHUNK_SIZE) { pcmbuf_boost(false); sleep(1); } while (length > 0) { copy_n = MIN(length, pcmbuf_size - audiobuffer_pos - audiobuffer_fillpos); copy_n = MIN(CHUNK_SIZE - audiobuffer_fillpos, copy_n); buf = (short *)&audiobuffer[audiobuffer_pos+audiobuffer_fillpos]; samples = copy_n / 2; for (i = 0; i < samples; i++) buf[i] = (inbuf[i] * factor) >> 8; inbuf += samples; audiobuffer_fillpos += copy_n; length -= copy_n; /* Pre-buffer to meet CHUNK_SIZE requirement */ if (audiobuffer_fillpos < CHUNK_SIZE && length == 0) { break ; } pcmbuf_flush_fillpos(); } } /** * Fades in buf2 and mixes it with buf. */ static __inline int crossfade(short *buf, const short *buf2, int length) { int size, i; int size_insert = 0; int factor; size = MAX(0, MIN(length, crossfade_rem)); switch (crossfade_mode) { /* Fade in the current stream and mix it. */ case CFM_MIX: case CFM_CROSSFADE: factor = ((crossfade_fade_in_amount-crossfade_fade_in_rem) <<8)/crossfade_fade_in_amount; for (i = 0; i < size; i++) { buf[i] = MIN(MAX(buf[i] + ((buf2[i] * factor) >> 8), -32768), 32767); } break ; /* Join two streams. */ case CFM_FLUSH: for (i = 0; i < size; i++) { buf[i] = buf2[i]; } //memcpy((char *)buf, (char *)buf2, size*2); break ; } crossfade_fade_in_rem = MAX(0, crossfade_fade_in_rem - size); crossfade_rem -= size; if (crossfade_rem <= 0) { if (crossfade_fade_in_rem > 0 && crossfade_fade_in_amount > 0) { size_insert = MAX(0, MIN(crossfade_fade_in_rem, length - size)); fade_insert(&buf2[size], size_insert*2); crossfade_fade_in_rem -= size_insert; } if (crossfade_fade_in_rem <= 0) crossfade_active = false; } return size + size_insert; } static bool prepare_insert(long length) { if (crossfade_init) crossfade_start(); if (low_latency_mode) { /* 1/4s latency. */ if (pcmbuf_unplayed_bytes > NATIVE_FREQUENCY * 4 / 4 && pcm_is_playing()) return false; } if (audiobuffer_free < length + audiobuffer_fillpos + CHUNK_SIZE && !crossfade_active) { pcmbuf_boost(false); return false; } if (!pcm_is_playing()) { pcmbuf_boost(true); crossfade_active = false; /* Pre-buffer 1s. */ if (audiobuffer_free < pcmbuf_size - NATIVE_FREQUENCY*4) { logf("pcm starting"); pcmbuf_play_start(); } } return true; } void* pcmbuf_request_buffer(long length, long *realsize) { void *ptr = NULL; if (!prepare_insert(length)) { *realsize = 0; return NULL; } if (crossfade_active) { *realsize = MIN(length, PCMBUF_GUARD); ptr = &guardbuf[0]; } else { *realsize = MIN(length, pcmbuf_size - audiobuffer_pos - audiobuffer_fillpos); if (*realsize < length) { *realsize += MIN((long)(length - *realsize), PCMBUF_GUARD); } ptr = &audiobuffer[audiobuffer_pos + audiobuffer_fillpos]; } return ptr; } bool pcmbuf_is_crossfade_active(void) { return crossfade_active || crossfade_init; } void pcmbuf_flush_buffer(long length) { int copy_n; char *buf; if (crossfade_active) { buf = &guardbuf[0]; length = MIN(length, PCMBUF_GUARD); while (length > 0 && crossfade_active) { copy_n = MIN(length, pcmbuf_size - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= pcmbuf_size) crossfade_pos -= pcmbuf_size; } while (length > 0) { pcmbuf_flush_fillpos(); copy_n = MIN(length, pcmbuf_size - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; } } audiobuffer_fillpos += length; try_flush: if (audiobuffer_fillpos < CHUNK_SIZE && pcmbuf_size - audiobuffer_pos - audiobuffer_fillpos > 0) return ; copy_n = audiobuffer_fillpos - (pcmbuf_size - audiobuffer_pos); if (copy_n > 0) { audiobuffer_fillpos -= copy_n; pcmbuf_flush_fillpos(); copy_n = MIN(copy_n, PCMBUF_GUARD); memcpy(&audiobuffer[0], &guardbuf[0], copy_n); audiobuffer_fillpos = copy_n; goto try_flush; } pcmbuf_flush_fillpos(); } bool pcmbuf_insert_buffer(char *buf, long length) { long copy_n = 0; if (!prepare_insert(length)) return false; if (crossfade_active) { while (length > 0 && crossfade_active) { copy_n = MIN(length, pcmbuf_size - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= pcmbuf_size) crossfade_pos -= pcmbuf_size; } while (length > 0) { pcmbuf_flush_fillpos(); copy_n = MIN(length, pcmbuf_size - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; } } while (length > 0) { copy_n = MIN(length, pcmbuf_size - audiobuffer_pos - audiobuffer_fillpos); copy_n = MIN(CHUNK_SIZE - audiobuffer_fillpos, copy_n); memcpy(&audiobuffer[audiobuffer_pos+audiobuffer_fillpos], buf, copy_n); buf += copy_n; audiobuffer_fillpos += copy_n; length -= copy_n; /* Pre-buffer to meet CHUNK_SIZE requirement */ if (audiobuffer_fillpos < CHUNK_SIZE && length == 0) { return true; } pcmbuf_flush_fillpos(); } return true; } /* Generates a constant square wave sound with a given frequency in Hertz for a duration in milliseconds. */ void pcmbuf_beep(int frequency, int duration, int amplitude) { int state = 0, count = 0; int interval = NATIVE_FREQUENCY / frequency; int pos; short *buf = (short *)audiobuffer; int bufsize = pcmbuf_size / 2; /* FIXME: Should start playback. */ //if (pcmbuf_unplayed_bytes * 1000 < 4 * NATIVE_FREQUENCY * duration) // return ; pos = (audiobuffer_pos - pcmbuf_unplayed_bytes) / 2; if (pos < 0) pos += bufsize; duration = NATIVE_FREQUENCY / 1000 * duration; while (duration-- > 0) { if (state) { buf[pos] = MIN(MAX(buf[pos] + amplitude, -32768), 32767); if (++pos >= bufsize) pos = 0; buf[pos] = MIN(MAX(buf[pos] + amplitude, -32768), 32767); } else { buf[pos] = MIN(MAX(buf[pos] - amplitude, -32768), 32767); if (++pos >= bufsize) pos = 0; buf[pos] = MIN(MAX(buf[pos] - amplitude, -32768), 32767); } if (++count >= interval) { count = 0; if (state) state = 0; else state = 1; } pos++; if (pos >= bufsize) pos = 0; } } /* Returns pcm buffer usage in percents (0 to 100). */ int pcmbuf_usage(void) { return pcmbuf_unplayed_bytes * 100 / pcmbuf_size; } int pcmbuf_mix_usage(void) { return pcmbuf_mix_used_bytes * 100 / pcmbuf_unplayed_bytes; } void pcmbuf_reset_mixpos(void) { int bufsize = pcmbuf_size / 2; pcmbuf_mix_used_bytes = 0; mixpos = (audiobuffer_pos - pcmbuf_unplayed_bytes) / 2; if (mixpos < 0) mixpos += bufsize; if (mixpos >= bufsize) mixpos -= bufsize; } void pcmbuf_mix(char *buf, long length) { short *ibuf = (short *)buf; short *obuf = (short *)audiobuffer; int bufsize = pcmbuf_size / 2; if (pcmbuf_mix_used_bytes == 0) pcmbuf_reset_mixpos(); pcmbuf_mix_used_bytes += length; length /= 2; while (length-- > 0) { obuf[mixpos] = MIN(MAX(obuf[mixpos]/4 + *ibuf, -32768), 32767); ibuf++; mixpos++; if (mixpos >= bufsize) mixpos = 0; } } void pcmbuf_crossfade_enable(bool on_off) { crossfade_enabled = on_off; if (crossfade_enabled) { pcmbuf_set_watermark_bytes(pcmbuf_size - (NATIVE_FREQUENCY*4/2)); } else { pcmbuf_set_watermark_bytes(PCMBUF_WATERMARK); } } bool pcmbuf_is_crossfade_enabled(void) { if (global_settings.crossfade == CROSSFADE_ENABLE_SHUFFLE) return global_settings.playlist_shuffle; return crossfade_enabled; }