/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 Damien Teney * modified to use int instead of float math by Andreas Zwirtes * binary fixed point format and LCD aspect handling by Jens Arnold * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ***************************************************************************/ #include "plugin.h" #include "playergfx.h" /* Loops that the values are displayed */ #define DISP_TIME 30 /* variable button definitions */ #if CONFIG_KEYPAD == RECORDER_PAD #define CUBE_QUIT (BUTTON_OFF | BUTTON_REL) #define CUBE_X_INC BUTTON_RIGHT #define CUBE_X_DEC BUTTON_LEFT #define CUBE_Y_INC BUTTON_UP #define CUBE_Y_DEC BUTTON_DOWN #define CUBE_Z_INC BUTTON_F2 #define CUBE_Z_DEC BUTTON_F1 #define CUBE_HIGHSPEED BUTTON_PLAY #elif CONFIG_KEYPAD == PLAYER_PAD #define CUBE_QUIT (BUTTON_STOP | BUTTON_REL) #define CUBE_X_INC BUTTON_RIGHT #define CUBE_X_DEC BUTTON_LEFT #define CUBE_Y_INC (BUTTON_ON | BUTTON_RIGHT) #define CUBE_Y_DEC (BUTTON_ON | BUTTON_LEFT) #define CUBE_Z_INC (BUTTON_MENU | BUTTON_RIGHT) #define CUBE_Z_DEC (BUTTON_MENU | BUTTON_LEFT) #define CUBE_HIGHSPEED BUTTON_PLAY #elif CONFIG_KEYPAD == ONDIO_PAD #define CUBE_QUIT (BUTTON_OFF | BUTTON_REL) #define CUBE_X_INC BUTTON_RIGHT #define CUBE_X_DEC BUTTON_LEFT #define CUBE_Y_INC BUTTON_UP #define CUBE_Y_DEC BUTTON_DOWN #define CUBE_Z_INC (BUTTON_MENU | BUTTON_UP) #define CUBE_Z_DEC (BUTTON_MENU | BUTTON_DOWN) #define CUBE_HIGHSPEED_PRE BUTTON_MENU #define CUBE_HIGHSPEED (BUTTON_MENU | BUTTON_REL) #elif (CONFIG_KEYPAD == IRIVER_H100_PAD) || \ (CONFIG_KEYPAD == IRIVER_H300_PAD) #define CUBE_QUIT (BUTTON_OFF | BUTTON_REL) #define CUBE_X_INC BUTTON_RIGHT #define CUBE_X_DEC BUTTON_LEFT #define CUBE_Y_INC BUTTON_UP #define CUBE_Y_DEC BUTTON_DOWN #define CUBE_Z_INC (BUTTON_ON | BUTTON_UP) #define CUBE_Z_DEC (BUTTON_ON | BUTTON_DOWN) #define CUBE_HIGHSPEED_PRE BUTTON_SELECT #define CUBE_HIGHSPEED (BUTTON_SELECT | BUTTON_REL) #endif struct point_3D { long x, y, z; }; struct point_2D { long x, y; }; static struct point_3D sommet[8]; static struct point_3D point3D[8]; static struct point_2D point2D[8]; static long matrice[3][3]; static int nb_points = 8; #ifdef HAVE_LCD_BITMAP #define MYLCD(fn) rb->lcd_ ## fn #define DIST (10*LCD_HEIGHT/16) static int x_off = LCD_WIDTH/2; static int y_off = LCD_HEIGHT/2; #if CONFIG_LCD == LCD_SSD1815 #define ASPECT 320 /* = 1.25 (fixed point 24.8) */ #else #define ASPECT 256 /* = 1.00 */ #endif #else /* !LCD_BITMAP */ #define MYLCD(fn) pgfx_ ## fn #define DIST 9 static int x_off = 10; static int y_off = 7; #define ASPECT 300 /* = 1.175 */ #endif /* !LCD_BITMAP */ static long z_off = 600; /* Precalculated sine and cosine * 16384 (fixed point 18.14) */ static short sin_table[91] = { 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563, 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334, 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943, 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310, 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365, 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043, 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295, 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082, 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381, 16384 }; static struct plugin_api* rb; static long sin(int val) { /* Speed improvement through sukzessive lookup */ if (val < 181) { if (val < 91) { /* phase 0-90 degree */ return (long)sin_table[val]; } else { /* phase 91-180 degree */ return (long)sin_table[180-val]; } } else { if (val < 271) { /* phase 181-270 degree */ return -(long)sin_table[val-180]; } else { /* phase 270-359 degree */ return -(long)sin_table[360-val]; } } return 0; } static long cos(int val) { /* Speed improvement through sukzessive lookup */ if (val < 181) { if (val < 91) { /* phase 0-90 degree */ return (long)sin_table[90-val]; } else { /* phase 91-180 degree */ return -(long)sin_table[val-90]; } } else { if (val < 271) { /* phase 181-270 degree */ return -(long)sin_table[270-val]; } else { /* phase 270-359 degree */ return (long)sin_table[val-270]; } } return 0; } static void cube_rotate(int xa, int ya, int za) { int i; /* Just to prevent unnecessary lookups */ long sxa, cxa, sya, cya, sza, cza; sxa = sin(xa); cxa = cos(xa); sya = sin(ya); cya = cos(ya); sza = sin(za); cza = cos(za); /* calculate overall translation matrix */ matrice[0][0] = (cza * cya) >> 14; matrice[1][0] = (sza * cya) >> 14; matrice[2][0] = -sya; matrice[0][1] = (((cza * sya) >> 14) * sxa - sza * cxa) >> 14; matrice[1][1] = (((sza * sya) >> 14) * sxa + cxa * cza) >> 14; matrice[2][1] = (sxa * cya) >> 14; matrice[0][2] = (((cza * sya) >> 14) * cxa + sza * sxa) >> 14; matrice[1][2] = (((sza * sya) >> 14) * cxa - cza * sxa) >> 14; matrice[2][2] = (cxa * cya) >> 14; /* apply translation matrix to all points */ for (i = 0; i < nb_points; i++) { point3D[i].x = matrice[0][0] * sommet[i].x + matrice[1][0] * sommet[i].y + matrice[2][0] * sommet[i].z; point3D[i].y = matrice[0][1] * sommet[i].x + matrice[1][1] * sommet[i].y + matrice[2][1] * sommet[i].z; point3D[i].z = matrice[0][2] * sommet[i].x + matrice[1][2] * sommet[i].y + matrice[2][2] * sommet[i].z; } } static void cube_viewport(void) { int i; /* Do viewport transformation for all points */ for (i = 0; i < nb_points; i++) { #if ASPECT != 256 point2D[i].x = (point3D[i].x * ASPECT) / (point3D[i].z + (z_off << 14)) + x_off; #else point2D[i].x = (point3D[i].x << 8) / (point3D[i].z + (z_off << 14)) + x_off; #endif point2D[i].y = (point3D[i].y << 8) / (point3D[i].z + (z_off << 14)) + y_off; } } static void cube_init(void) { /* Original 3D-position of cube's corners */ sommet[0].x = -DIST; sommet[0].y = -DIST; sommet[0].z = -DIST; sommet[1].x = DIST; sommet[1].y = -DIST; sommet[1].z = -DIST; sommet[2].x = DIST; sommet[2].y = DIST; sommet[2].z = -DIST; sommet[3].x = -DIST; sommet[3].y = DIST; sommet[3].z = -DIST; sommet[4].x = DIST; sommet[4].y = -DIST; sommet[4].z = DIST; sommet[5].x = -DIST; sommet[5].y = -DIST; sommet[5].z = DIST; sommet[6].x = -DIST; sommet[6].y = DIST; sommet[6].z = DIST; sommet[7].x = DIST; sommet[7].y = DIST; sommet[7].z = DIST; } static void line(int a, int b) { MYLCD(drawline)(point2D[a].x, point2D[a].y, point2D[b].x, point2D[b].y); } static void cube_draw(void) { /* Draws front face */ line(0,1); line(1,2); line(2,3); line(3,0); /* Draws rear face */ line(4,5); line(5,6); line(6,7); line(7,4); /* Draws the other edges */ line(0,5); line(1,4); line(2,7); line(3,6); } enum plugin_status plugin_start(struct plugin_api* api, void* parameter) { int t_disp=0; char buffer[30]; int button; int lastbutton=0; int xa=0; int ya=0; int za=0; int xs=1; int ys=3; int zs=1; bool highspeed=0; bool exit=0; TEST_PLUGIN_API(api); (void)(parameter); rb = api; #ifdef HAVE_LCD_BITMAP rb->lcd_setfont(FONT_SYSFIXED); #else if (!pgfx_init(rb, 4, 2)) { rb->splash(HZ*2, true, "Old LCD :("); return PLUGIN_OK; } pgfx_display(3, 0); #endif cube_init(); while(!exit) { if (highspeed) rb->yield(); else rb->sleep(4); MYLCD(clear_display)(); cube_rotate(xa,ya,za); cube_viewport(); cube_draw(); #ifdef HAVE_LCD_BITMAP if (t_disp>0) { t_disp--; rb->snprintf(buffer, sizeof(buffer), "x:%d y:%d z:%d h:%d", xs, ys, zs, highspeed); rb->lcd_putsxy(0, LCD_HEIGHT-8, buffer); } #else if (t_disp>0) { if (t_disp == DISP_TIME) { rb->snprintf(buffer, sizeof(buffer), "x%d", xs); rb->lcd_puts(0, 0, buffer); rb->snprintf(buffer, sizeof(buffer), "y%d", ys); rb->lcd_puts(0, 1, buffer); pgfx_display(3, 0); rb->snprintf(buffer, sizeof(buffer), "z%d", zs); rb->lcd_puts(8, 0, buffer); rb->snprintf(buffer, sizeof(buffer), "h%d", highspeed); rb->lcd_puts(8, 1, buffer); } t_disp--; if (t_disp == 0) { rb->lcd_clear_display(); pgfx_display(3, 0); } } #endif MYLCD(update)(); xa+=xs; if (xa>359) xa-=360; if (xa<0) xa+=360; ya+=ys; if (ya>359) ya-=360; if (ya<0) ya+=360; za+=zs; if (za>359) za-=360; if (za<0) za+=360; button = rb->button_get(false); switch(button) { case CUBE_X_INC: xs+=1; if (xs>10) xs=10; t_disp=DISP_TIME; break; case CUBE_X_DEC: xs-=1; if (xs<-10) xs=-10; t_disp=DISP_TIME; break; case CUBE_Y_INC: ys+=1; if (ys>10) ys=10; t_disp=DISP_TIME; break; case CUBE_Y_DEC: ys-=1; if (ys<-10) ys=-10; t_disp=DISP_TIME; break; case CUBE_Z_INC: zs+=1; if (zs>10) zs=10; t_disp=DISP_TIME; break; case CUBE_Z_DEC: zs-=1; if (zs<-10) zs=-10; t_disp=DISP_TIME; break; case CUBE_HIGHSPEED: #ifdef CUBE_HIGHSPEED_PRE if (lastbutton!=CUBE_HIGHSPEED_PRE) break; #endif highspeed=!highspeed; t_disp=DISP_TIME; break; case CUBE_QUIT: exit=1; break; default: if(rb->default_event_handler(button) == SYS_USB_CONNECTED) { #ifdef HAVE_LCD_CHARCELLS pgfx_release(); #endif return PLUGIN_USB_CONNECTED; } break; } if (button!=BUTTON_NONE) lastbutton=button; } #ifdef HAVE_LCD_CHARCELLS pgfx_release(); #endif return PLUGIN_OK; }