/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2006 Daniel Ankers * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "fat.h" #include "hotswap.h" #include "ata-sd-target.h" #include "ata_idle_notify.h" #include "system.h" #include #include "thread.h" #include "led.h" #include "disk.h" #include "cpu.h" #include "panic.h" #include "usb.h" #define BLOCK_SIZE 512 #define SECTOR_SIZE 512 #define BLOCKS_PER_BANK 0x7a7800 #define STATUS_REG (*(volatile unsigned int *)(0x70008204)) #define REG_1 (*(volatile unsigned int *)(0x70008208)) #define UNKNOWN (*(volatile unsigned int *)(0x70008210)) #define BLOCK_SIZE_REG (*(volatile unsigned int *)(0x7000821c)) #define BLOCK_COUNT_REG (*(volatile unsigned int *)(0x70008220)) #define REG_5 (*(volatile unsigned int *)(0x70008224)) #define CMD_REG0 (*(volatile unsigned int *)(0x70008228)) #define CMD_REG1 (*(volatile unsigned int *)(0x7000822c)) #define CMD_REG2 (*(volatile unsigned int *)(0x70008230)) #define RESPONSE_REG (*(volatile unsigned int *)(0x70008234)) #define SD_STATE_REG (*(volatile unsigned int *)(0x70008238)) #define REG_11 (*(volatile unsigned int *)(0x70008240)) #define REG_12 (*(volatile unsigned int *)(0x70008244)) #define DATA_REG (*(volatile unsigned int *)(0x70008280)) /* STATUS_REG bits */ #define DATA_DONE (1 << 12) #define CMD_DONE (1 << 13) #define ERROR_BITS (0x3f) #define READY_FOR_DATA (1 << 8) #define FIFO_FULL (1 << 7) #define FIFO_EMPTY (1 << 6) #define CMD_OK 0x0 /* Command was successful */ #define CMD_ERROR_2 0x2 /* SD did not respond to command (either it doesn't understand the command or is not inserted) */ /* SD States */ #define IDLE 0 #define READY 1 #define IDENT 2 #define STBY 3 #define TRAN 4 #define DATA 5 #define RCV 6 #define PRG 7 #define DIS 8 #define FIFO_LEN 16 /* FIFO is 16 words deep */ /* SD Commands */ #define GO_IDLE_STATE 0 #define ALL_SEND_CID 2 #define SEND_RELATIVE_ADDR 3 #define SET_DSR 4 #define SWITCH_FUNC 6 #define SELECT_CARD 7 #define DESELECT_CARD 7 #define SEND_IF_COND 8 #define SEND_CSD 9 #define SEND_CID 10 #define STOP_TRANSMISSION 12 #define SEND_STATUS 13 #define GO_INACTIVE_STATE 15 #define SET_BLOCKLEN 16 #define READ_SINGLE_BLOCK 17 #define READ_MULTIPLE_BLOCK 18 #define SEND_NUM_WR_BLOCKS 22 #define WRITE_BLOCK 24 #define WRITE_MULTIPLE_BLOCK 25 #define ERASE_WR_BLK_START 32 #define ERASE_WR_BLK_END 33 #define ERASE 38 #define APP_CMD 55 #define EC_OK 0 #define EC_FAILED 1 #define EC_NOCARD 2 #define EC_WAIT_STATE_FAILED 3 #define EC_CHECK_TIMEOUT_FAILED 4 #define EC_POWER_UP 5 #define EC_READ_TIMEOUT 6 #define EC_WRITE_TIMEOUT 7 #define EC_TRAN_SEL_BANK 8 #define EC_TRAN_READ_ENTRY 9 #define EC_TRAN_READ_EXIT 10 #define EC_TRAN_WRITE_ENTRY 11 #define EC_TRAN_WRITE_EXIT 12 #define EC_FIFO_SEL_BANK_EMPTY 13 #define EC_FIFO_SEL_BANK_DONE 14 #define EC_FIFO_ENA_BANK_EMPTY 15 #define EC_FIFO_READ_FULL 16 #define EC_FIFO_WR_EMPTY 17 #define EC_FIFO_WR_DONE 18 #define EC_COMMAND 19 #define NUM_EC 20 /* Application Specific commands */ #define SET_BUS_WIDTH 6 #define SD_APP_OP_COND 41 /** global, exported variables **/ #ifdef HAVE_HOTSWAP #define NUM_VOLUMES 2 #else #define NUM_VOLUMES 1 #endif /* for compatibility */ int ata_spinup_time = 0; long last_disk_activity = -1; /** static, private data **/ static bool initialized = false; static long next_yield = 0; #define MIN_YIELD_PERIOD 1000 static tSDCardInfo card_info[2]; static tSDCardInfo *currcard = NULL; /* current active card */ struct sd_card_status { int retry; int retry_max; }; static struct sd_card_status sd_status[NUM_VOLUMES] = { { 0, 1 }, #ifdef HAVE_HOTSWAP { 0, 10 } #endif }; /* Shoot for around 75% usage */ static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x1c0)/sizeof(long)]; static const char sd_thread_name[] = "ata/sd"; static struct mutex sd_mtx SHAREDBSS_ATTR; static struct event_queue sd_queue; /* Posted when card plugged status has changed */ #define SD_HOTSWAP 1 /* Actions taken by sd_thread when card status has changed */ enum sd_thread_actions { SDA_NONE = 0x0, SDA_UNMOUNTED = 0x1, SDA_MOUNTED = 0x2 }; /* Private Functions */ static unsigned int check_time[NUM_EC]; static inline bool sd_check_timeout(long timeout, int id) { return !TIME_AFTER(USEC_TIMER, check_time[id] + timeout); } static bool sd_poll_status(unsigned int trigger, long timeout) { long t = USEC_TIMER; while ((STATUS_REG & trigger) == 0) { long time = USEC_TIMER; if (TIME_AFTER(time, next_yield)) { long ty = USEC_TIMER; yield(); timeout += USEC_TIMER - ty; next_yield = ty + MIN_YIELD_PERIOD; } if (TIME_AFTER(time, t + timeout)) return false; } return true; } static int sd_command(unsigned int cmd, unsigned long arg1, unsigned int *response, unsigned int type) { int i, words; /* Number of 16 bit words to read from RESPONSE_REG */ unsigned int data[9]; CMD_REG0 = cmd; CMD_REG1 = (unsigned int)((arg1 & 0xffff0000) >> 16); CMD_REG2 = (unsigned int)((arg1 & 0xffff)); UNKNOWN = type; if (!sd_poll_status(CMD_DONE, 100000)) return -EC_COMMAND; if ((STATUS_REG & ERROR_BITS) != CMD_OK) /* Error sending command */ return -EC_COMMAND - (STATUS_REG & ERROR_BITS)*100; if (cmd == GO_IDLE_STATE) return 0; /* no response here */ words = (type == 2) ? 9 : 3; for (i = 0; i < words; i++) /* RESPONSE_REG is read MSB first */ data[i] = RESPONSE_REG; /* Read most significant 16-bit word */ if (response == NULL) { /* response discarded */ } else if (type == 2) { /* Response type 2 has the following structure: * [135:135] Start Bit - '0' * [134:134] Transmission bit - '0' * [133:128] Reserved - '111111' * [127:001] CID or CSD register including internal CRC7 * [000:000] End Bit - '1' */ response[3] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8); response[2] = (data[2]<<24) + (data[3]<<8) + (data[4]>>8); response[1] = (data[4]<<24) + (data[5]<<8) + (data[6]>>8); response[0] = (data[6]<<24) + (data[7]<<8) + (data[8]>>8); } else { /* Response types 1, 1b, 3, 6, 7 have the following structure: * Types 4 and 5 are not supported. * * [47] Start bit - '0' * [46] Transmission bit - '0' * [45:40] R1, R1b, R6, R7: Command index * R3: Reserved - '111111' * [39:8] R1, R1b: Card Status * R3: OCR Register * R6: [31:16] RCA * [15: 0] Card Status Bits 23, 22, 19, 12:0 * [23] COM_CRC_ERROR * [22] ILLEGAL_COMMAND * [19] ERROR * [12:9] CURRENT_STATE * [8] READY_FOR_DATA * [7:6] * [5] APP_CMD * [4] * [3] AKE_SEQ_ERROR * [2] Reserved * [1:0] Reserved for test mode * R7: [19:16] Voltage accepted * [15:8] echo-back of check pattern * [7:1] R1, R1b: CRC7 * R3: Reserved - '1111111' * [0] End Bit - '1' */ response[0] = (data[0]<<24) + (data[1]<<8) + (data[2]>>8); } return 0; } static int sd_wait_for_state(unsigned int state, int id) { unsigned int response = 0; unsigned int timeout = 0x80000; check_time[id] = USEC_TIMER; while (1) { int ret = sd_command(SEND_STATUS, currcard->rca, &response, 1); long us; if (ret < 0) return ret*100 - id; if (((response >> 9) & 0xf) == state) { SD_STATE_REG = state; return 0; } if (!sd_check_timeout(timeout, id)) return -EC_WAIT_STATE_FAILED*100 - id; us = USEC_TIMER; if (TIME_AFTER(us, next_yield)) { yield(); timeout += USEC_TIMER - us; next_yield = us + MIN_YIELD_PERIOD; } } } static inline void copy_read_sectors_fast(unsigned char **buf) { /* Copy one chunk of 16 words using best method for start alignment */ switch ( (intptr_t)*buf & 3 ) { case 0: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r2, r2, r3, lsl #16 \r\n" "orr r4, r4, r5, lsl #16 \r\n" "orr r6, r6, r7, lsl #16 \r\n" "orr r8, r8, r9, lsl #16 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "ldmia %[data], { r2-r9 } \r\n" "orr r2, r2, r3, lsl #16 \r\n" "orr r4, r4, r5, lsl #16 \r\n" "orr r6, r6, r7, lsl #16 \r\n" "orr r8, r8, r9, lsl #16 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" : [buf]"+&r"(*buf) : [data]"r"(&DATA_REG) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9" ); break; case 1: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r3, r2, r3, lsl #16 \r\n" "strb r3, [%[buf]], #1 \r\n" "mov r3, r3, lsr #8 \r\n" "strh r3, [%[buf]], #2 \r\n" "mov r3, r3, lsr #16 \r\n" "orr r3, r3, r4, lsl #8 \r\n" "orr r3, r3, r5, lsl #24 \r\n" "mov r5, r5, lsr #8 \r\n" "orr r5, r5, r6, lsl #8 \r\n" "orr r5, r5, r7, lsl #24 \r\n" "mov r7, r7, lsr #8 \r\n" "orr r7, r7, r8, lsl #8 \r\n" "orr r7, r7, r9, lsl #24 \r\n" "mov r2, r9, lsr #8 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r3-r10 } \r\n" "orr r2, r2, r3, lsl #8 \r\n" "orr r2, r2, r4, lsl #24 \r\n" "mov r4, r4, lsr #8 \r\n" "orr r4, r4, r5, lsl #8 \r\n" "orr r4, r4, r6, lsl #24 \r\n" "mov r6, r6, lsr #8 \r\n" "orr r6, r6, r7, lsl #8 \r\n" "orr r6, r6, r8, lsl #24 \r\n" "mov r8, r8, lsr #8 \r\n" "orr r8, r8, r9, lsl #8 \r\n" "orr r8, r8, r10, lsl #24 \r\n" "mov r10, r10, lsr #8 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "strb r10, [%[buf]], #1 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&DATA_REG) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; case 2: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "strh r2, [%[buf]], #2 \r\n" "orr r3, r3, r4, lsl #16 \r\n" "orr r5, r5, r6, lsl #16 \r\n" "orr r7, r7, r8, lsl #16 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r2-r8, r10 } \r\n" "orr r2, r9, r2, lsl #16 \r\n" "orr r3, r3, r4, lsl #16 \r\n" "orr r5, r5, r6, lsl #16 \r\n" "orr r7, r7, r8, lsl #16 \r\n" "stmia %[buf]!, { r2, r3, r5, r7 } \r\n" "strh r10, [%[buf]], #2 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&DATA_REG) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; case 3: asm volatile ( "ldmia %[data], { r2-r9 } \r\n" "orr r3, r2, r3, lsl #16 \r\n" "strb r3, [%[buf]], #1 \r\n" "mov r3, r3, lsr #8 \r\n" "orr r3, r3, r4, lsl #24 \r\n" "mov r4, r4, lsr #8 \r\n" "orr r5, r4, r5, lsl #8 \r\n" "orr r5, r5, r6, lsl #24 \r\n" "mov r6, r6, lsr #8 \r\n" "orr r7, r6, r7, lsl #8 \r\n" "orr r7, r7, r8, lsl #24 \r\n" "mov r8, r8, lsr #8 \r\n" "orr r2, r8, r9, lsl #8 \r\n" "stmia %[buf]!, { r3, r5, r7 } \r\n" "ldmia %[data], { r3-r10 } \r\n" "orr r2, r2, r3, lsl #24 \r\n" "mov r3, r3, lsr #8 \r\n" "orr r4, r3, r4, lsl #8 \r\n" "orr r4, r4, r5, lsl #24 \r\n" "mov r5, r5, lsr #8 \r\n" "orr r6, r5, r6, lsl #8 \r\n" "orr r6, r6, r7, lsl #24 \r\n" "mov r7, r7, lsr #8 \r\n" "orr r8, r7, r8, lsl #8 \r\n" "orr r8, r8, r9, lsl #24 \r\n" "mov r9, r9, lsr #8 \r\n" "orr r10, r9, r10, lsl #8 \r\n" "stmia %[buf]!, { r2, r4, r6, r8 } \r\n" "strh r10, [%[buf]], #2 \r\n" "mov r10, r10, lsr #16 \r\n" "strb r10, [%[buf]], #1 \r\n" : [buf]"+&r"(*buf) : [data]"r"(&DATA_REG) : "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10" ); break; } } static inline void copy_read_sectors_slow(unsigned char** buf) { int cnt = FIFO_LEN; int t; /* Copy one chunk of 16 words */ asm volatile ( "1: \r\n" "ldrh %[t], [%[data]] \r\n" "strb %[t], [%[buf]], #1 \r\n" "mov %[t], %[t], lsr #8 \r\n" "strb %[t], [%[buf]], #1 \r\n" "subs %[cnt], %[cnt], #1 \r\n" "bgt 1b \r\n" : [cnt]"+&r"(cnt), [buf]"+&r"(*buf), [t]"=&r"(t) : [data]"r"(&DATA_REG) ); } /* Writes have to be kept slow for now */ static inline void copy_write_sectors(const unsigned char** buf) { int cnt = FIFO_LEN; unsigned t; do { t = *(*buf)++; t |= *(*buf)++ << 8; DATA_REG = t; } while (--cnt > 0); /* tail loop is faster */ } static int sd_select_bank(unsigned char bank) { unsigned char card_data[512]; const unsigned char* write_buf; int i, ret; memset(card_data, 0, 512); ret = sd_wait_for_state(TRAN, EC_TRAN_SEL_BANK); if (ret < 0) return ret; BLOCK_SIZE_REG = 512; BLOCK_COUNT_REG = 1; ret = sd_command(35, 0, NULL, 0x1c0d); /* CMD35 is vendor specific */ if (ret < 0) return ret; SD_STATE_REG = PRG; card_data[0] = bank; /* Write the card data */ write_buf = card_data; for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN) { /* Wait for the FIFO to empty */ if (sd_poll_status(FIFO_EMPTY, 10000)) { copy_write_sectors(&write_buf); /* Copy one chunk of 16 words */ continue; } return -EC_FIFO_SEL_BANK_EMPTY; } if (!sd_poll_status(DATA_DONE, 10000)) return -EC_FIFO_SEL_BANK_DONE; currcard->current_bank = bank; return 0; } static void sd_card_mux(int card_no) { /* Set the current card mux */ #ifdef SANSA_E200 if (card_no == 0) { GPO32_VAL |= 0x4; GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a); GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f); outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014); } else { GPO32_VAL &= ~0x4; GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a); GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a); outl(inl(0x70000014) & ~(0x3ffff), 0x70000014); } #else /* SANSA_C200 */ if (card_no == 0) { GPO32_VAL |= 0x4; GPIO_CLEAR_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x1f); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_SET_BITWISE(GPIOA_OUTPUT_VAL, 0x7a); GPIO_SET_BITWISE( GPIOA_OUTPUT_EN, 0x7a); outl(inl(0x70000014) & ~(0x3ffff), 0x70000014); } else { GPO32_VAL &= ~0x4; GPIO_CLEAR_BITWISE(GPIOA_ENABLE, 0x7a); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x7a); GPIO_SET_BITWISE(GPIOD_ENABLE, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL, 0x1f); GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x1f); outl((inl(0x70000014) & ~(0x3ffff)) | 0x255aa, 0x70000014); } #endif } static void sd_init_device(int card_no) { /* SD Protocol registers */ #ifdef HAVE_HOTSWAP unsigned int response = 0; #endif unsigned int i; unsigned int c_size; unsigned long c_mult; unsigned char carddata[512]; unsigned char *dataptr; int ret; /* Enable and initialise controller */ REG_1 = 6; /* Initialise card data as blank */ memset(currcard, 0, sizeof(*currcard)); /* Switch card mux to card to initialize */ sd_card_mux(card_no); /* Init NAND */ REG_11 |= (1 << 15); REG_12 |= (1 << 15); REG_12 &= ~(3 << 12); REG_12 |= (1 << 13); REG_11 &= ~(3 << 12); REG_11 |= (1 << 13); DEV_EN |= DEV_ATA; /* Enable controller */ DEV_RS |= DEV_ATA; /* Reset controller */ DEV_RS &=~DEV_ATA; /* Clear Reset */ SD_STATE_REG = TRAN; REG_5 = 0xf; ret = sd_command(GO_IDLE_STATE, 0, NULL, 256); if (ret < 0) goto card_init_error; check_time[EC_POWER_UP] = USEC_TIMER; #ifdef HAVE_HOTSWAP /* Check for SDHC: - non-SDHC cards simply ignore SEND_IF_COND (CMD8) and we get error -219, which we can just ignore and assume we're dealing with standard SD. - SDHC cards echo back the argument into the response. This is how we tell if the card is SDHC. */ ret = sd_command(SEND_IF_COND,0x1aa, &response,7); if ( (ret < 0) && (ret!=-219) ) goto card_init_error; #endif while ((currcard->ocr & (1 << 31)) == 0) /* until card is powered up */ { ret = sd_command(APP_CMD, currcard->rca, NULL, 1); if (ret < 0) goto card_init_error; #ifdef HAVE_HOTSWAP if(response == 0x1aa) { /* SDHC */ ret = sd_command(SD_APP_OP_COND, (1<<30)|0x100000, &currcard->ocr, 3); } else #endif /* HAVE_HOTSWAP */ { /* SD Standard */ ret = sd_command(SD_APP_OP_COND, 0x100000, &currcard->ocr, 3); } if (ret < 0) goto card_init_error; if (!sd_check_timeout(5000000, EC_POWER_UP)) { ret = -EC_POWER_UP; goto card_init_error; } } ret = sd_command(ALL_SEND_CID, 0, currcard->cid, 2); if (ret < 0) goto card_init_error; ret = sd_command(SEND_RELATIVE_ADDR, 0, &currcard->rca, 1); if (ret < 0) goto card_init_error; ret = sd_command(SEND_CSD, currcard->rca, currcard->csd, 2); if (ret < 0) goto card_init_error; /* These calculations come from the Sandisk SD card product manual */ if( (currcard->csd[3]>>30) == 0) { /* CSD version 1.0 */ c_size = ((currcard->csd[2] & 0x3ff) << 2) + (currcard->csd[1]>>30) + 1; c_mult = 4 << ((currcard->csd[1] >> 15) & 7); currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 15); currcard->block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ currcard->numblocks = c_size * c_mult * (currcard->max_read_bl_len/512); currcard->capacity = currcard->numblocks * currcard->block_size; } #ifdef HAVE_HOTSWAP else if( (currcard->csd[3]>>30) == 1) { /* CSD version 2.0 */ c_size = ((currcard->csd[2] & 0x3f) << 16) + (currcard->csd[1]>>16) + 1; currcard->max_read_bl_len = 1 << ((currcard->csd[2] >> 16) & 0xf); currcard->block_size = BLOCK_SIZE; /* Always use 512 byte blocks */ currcard->numblocks = c_size << 10; currcard->capacity = currcard->numblocks * currcard->block_size; } #endif /* HAVE_HOTSWAP */ REG_1 = 0; ret = sd_command(SELECT_CARD, currcard->rca, NULL, 129); if (ret < 0) goto card_init_error; ret = sd_command(APP_CMD, currcard->rca, NULL, 1); if (ret < 0) goto card_init_error; ret = sd_command(SET_BUS_WIDTH, currcard->rca | 2, NULL, 1); /* 4 bit */ if (ret < 0) goto card_init_error; ret = sd_command(SET_BLOCKLEN, currcard->block_size, NULL, 1); if (ret < 0) goto card_init_error; BLOCK_SIZE_REG = currcard->block_size; /* If this card is >4GB & not SDHC, then we need to enable bank switching */ if( (currcard->numblocks >= BLOCKS_PER_BANK) && ((currcard->ocr & (1<<30)) == 0) ) { SD_STATE_REG = TRAN; BLOCK_COUNT_REG = 1; ret = sd_command(SWITCH_FUNC, 0x80ffffef, NULL, 0x1c05); if (ret < 0) goto card_init_error; /* Read 512 bytes from the card. The first 512 bits contain the status information TODO: Do something useful with this! */ dataptr = carddata; for (i = 0; i < BLOCK_SIZE/2; i += FIFO_LEN) { /* Wait for the FIFO to be full */ if (sd_poll_status(FIFO_FULL, 100000)) { copy_read_sectors_slow(&dataptr); continue; } ret = -EC_FIFO_ENA_BANK_EMPTY; goto card_init_error; } } currcard->initialized = 1; return; /* Card failed to initialize so disable it */ card_init_error: currcard->initialized = ret; } /* lock must already be aquired */ static void sd_select_device(int card_no) { currcard = &card_info[card_no]; if (card_no == 0) { /* Main card always gets a chance */ sd_status[0].retry = 0; } if (currcard->initialized > 0) { /* This card is already initialized - switch to it */ sd_card_mux(card_no); return; } if (currcard->initialized == 0) { /* Card needs (re)init */ sd_init_device(card_no); } } /* API Functions */ static void ata_led(bool onoff) { led(onoff); } int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { #ifndef HAVE_HOTSWAP const int drive = 0; #endif int ret; unsigned char *buf, *buf_end; int bank; /* TODO: Add DMA support. */ mutex_lock(&sd_mtx); ata_led(true); ata_read_retry: if (drive != 0 && !card_detect_target()) { /* no external sd-card inserted */ ret = -EC_NOCARD; goto ata_read_error; } sd_select_device(drive); if (currcard->initialized < 0) { ret = currcard->initialized; goto ata_read_error; } last_disk_activity = current_tick; /* Only switch banks with non-SDHC cards */ if((currcard->ocr & (1<<30))==0) { bank = start / BLOCKS_PER_BANK; if (currcard->current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) goto ata_read_error; } start -= bank * BLOCKS_PER_BANK; } ret = sd_wait_for_state(TRAN, EC_TRAN_READ_ENTRY); if (ret < 0) goto ata_read_error; BLOCK_COUNT_REG = incount; #ifdef HAVE_HOTSWAP if(currcard->ocr & (1<<30) ) { /* SDHC */ ret = sd_command(READ_MULTIPLE_BLOCK, start, NULL, 0x1c25); } else #endif { ret = sd_command(READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, NULL, 0x1c25); } if (ret < 0) goto ata_read_error; /* TODO: Don't assume BLOCK_SIZE == SECTOR_SIZE */ buf_end = (unsigned char *)inbuf + incount * currcard->block_size; for (buf = inbuf; buf < buf_end;) { /* Wait for the FIFO to be full */ if (sd_poll_status(FIFO_FULL, 0x80000)) { copy_read_sectors_fast(&buf); /* Copy one chunk of 16 words */ /* TODO: Switch bank if necessary */ continue; } ret = -EC_FIFO_READ_FULL; goto ata_read_error; } last_disk_activity = current_tick; ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1); if (ret < 0) goto ata_read_error; ret = sd_wait_for_state(TRAN, EC_TRAN_READ_EXIT); if (ret < 0) goto ata_read_error; while (1) { ata_led(false); mutex_unlock(&sd_mtx); return ret; ata_read_error: if (sd_status[drive].retry < sd_status[drive].retry_max && ret != -EC_NOCARD) { sd_status[drive].retry++; currcard->initialized = 0; goto ata_read_retry; } } } int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* outbuf) { /* Write support is not finished yet */ /* TODO: The standard suggests using ACMD23 prior to writing multiple blocks to improve performance */ #ifndef HAVE_HOTSWAP const int drive = 0; #endif int ret; const unsigned char *buf, *buf_end; int bank; mutex_lock(&sd_mtx); ata_led(true); ata_write_retry: if (drive != 0 && !card_detect_target()) { /* no external sd-card inserted */ ret = -EC_NOCARD; goto ata_write_error; } sd_select_device(drive); if (currcard->initialized < 0) { ret = currcard->initialized; goto ata_write_error; } /* Only switch banks with non-SDHC cards */ if((currcard->ocr & (1<<30))==0) { bank = start / BLOCKS_PER_BANK; if (currcard->current_bank != bank) { ret = sd_select_bank(bank); if (ret < 0) goto ata_write_error; } start -= bank * BLOCKS_PER_BANK; } check_time[EC_WRITE_TIMEOUT] = USEC_TIMER; ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_ENTRY); if (ret < 0) goto ata_write_error; BLOCK_COUNT_REG = count; #ifdef HAVE_HOTSWAP if(currcard->ocr & (1<<30) ) { /* SDHC */ ret = sd_command(WRITE_MULTIPLE_BLOCK, start, NULL, 0x1c2d); } else #endif { ret = sd_command(WRITE_MULTIPLE_BLOCK, start*BLOCK_SIZE, NULL, 0x1c2d); } if (ret < 0) goto ata_write_error; buf_end = outbuf + count * currcard->block_size - 2*FIFO_LEN; for (buf = outbuf; buf <= buf_end;) { if (buf == buf_end) { /* Set SD_STATE_REG to PRG for the last buffer fill */ SD_STATE_REG = PRG; } udelay(2); /* needed here (loop is too fast :-) */ /* Wait for the FIFO to empty */ if (sd_poll_status(FIFO_EMPTY, 0x80000)) { copy_write_sectors(&buf); /* Copy one chunk of 16 words */ /* TODO: Switch bank if necessary */ continue; } ret = -EC_FIFO_WR_EMPTY; goto ata_write_error; } last_disk_activity = current_tick; if (!sd_poll_status(DATA_DONE, 0x80000)) { ret = -EC_FIFO_WR_DONE; goto ata_write_error; } ret = sd_command(STOP_TRANSMISSION, 0, NULL, 1); if (ret < 0) goto ata_write_error; ret = sd_wait_for_state(TRAN, EC_TRAN_WRITE_EXIT); if (ret < 0) goto ata_write_error; while (1) { ata_led(false); mutex_unlock(&sd_mtx); return ret; ata_write_error: if (sd_status[drive].retry < sd_status[drive].retry_max && ret != -EC_NOCARD) { sd_status[drive].retry++; currcard->initialized = 0; goto ata_write_retry; } } } static void sd_thread(void) __attribute__((noreturn)); static void sd_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch ( ev.id ) { #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: fat_lock(); /* lock-out FAT activity first - prevent deadlocking via disk_mount that would cause a reverse-order attempt with another thread */ mutex_lock(&sd_mtx); /* lock-out card activity - direct calls into driver that bypass the fat cache */ /* We now have exclusive control of fat cache and ata */ disk_unmount(1); /* release "by force", ensure file descriptors aren't leaked and any busy ones are invalid if mounting */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info[1].initialized = 0; sd_status[1].retry = 0; if (ev.id == SYS_HOTSWAP_INSERTED) disk_mount(1); queue_broadcast(SYS_FS_CHANGED, 0); /* Access is now safe */ mutex_unlock(&sd_mtx); fat_unlock(); break; #endif case SYS_TIMEOUT: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { /* never let a timer wrap confuse us */ next_yield = USEC_TIMER; if (!idle_notified) { call_ata_idle_notifys(false); idle_notified = true; } } break; case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; case SYS_USB_DISCONNECTED: usb_acknowledge(SYS_USB_DISCONNECTED_ACK); break; } } } void ata_spindown(int seconds) { (void)seconds; } bool ata_disk_is_active(void) { return 0; } void ata_sleep(void) { } void ata_spin(void) { } /* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */ int ata_hard_reset(void) { return 0; } int ata_soft_reset(void) { return 0; } void ata_enable(bool on) { if(on) { DEV_EN |= DEV_ATA; /* Enable controller */ } else { DEV_EN &= ~DEV_ATA; /* Disable controller */ } } #ifdef HAVE_HOTSWAP void card_enable_monitoring_target(bool on) { if (on) { #ifdef SANSA_E200 GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80); #elif defined(SANSA_C200) GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08); #endif } else { #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); #elif defined(SANSA_C200) GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); #endif } } #endif int ata_init(void) { int ret = 0; if (!initialized) mutex_init(&sd_mtx); mutex_lock(&sd_mtx); ata_led(false); if (!initialized) { initialized = true; /* init controller */ outl(inl(0x70000088) & ~(0x4), 0x70000088); outl(inl(0x7000008c) & ~(0x4), 0x7000008c); GPO32_ENABLE |= 0x4; GPIO_SET_BITWISE(GPIOG_ENABLE, (0x3 << 5)); GPIO_SET_BITWISE(GPIOG_OUTPUT_EN, (0x3 << 5)); GPIO_SET_BITWISE(GPIOG_OUTPUT_VAL, (0x3 << 5)); #ifdef HAVE_HOTSWAP /* enable card detection port - mask interrupt first */ #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); GPIO_CLEAR_BITWISE(GPIOA_OUTPUT_EN, 0x80); GPIO_SET_BITWISE(GPIOA_ENABLE, 0x80); #elif defined SANSA_C200 GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); GPIO_CLEAR_BITWISE(GPIOL_OUTPUT_EN, 0x08); GPIO_SET_BITWISE(GPIOL_ENABLE, 0x08); #endif #endif sd_select_device(0); if (currcard->initialized < 0) ret = currcard->initialized; queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); /* enable interupt for the mSD card */ sleep(HZ/10); #ifdef HAVE_HOTSWAP #ifdef SANSA_E200 CPU_INT_EN = HI_MASK; CPU_HI_INT_EN = GPIO0_MASK; GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80); GPIOA_INT_CLR = 0x80; #elif defined SANSA_C200 CPU_INT_EN = HI_MASK; CPU_HI_INT_EN = GPIO2_MASK; GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08); GPIOL_INT_CLR = 0x08; #endif #endif } mutex_unlock(&sd_mtx); return ret; } /* move the sd-card info to mmc struct */ tCardInfo *card_get_info_target(int card_no) { int i, temp; static tCardInfo card; static const char mantissa[] = { /* *10 */ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int exponent[] = { /* use varies */ 1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000 }; card.initialized = card_info[card_no].initialized; card.ocr = card_info[card_no].ocr; for(i=0; i<4; i++) card.csd[i] = card_info[card_no].csd[3-i]; for(i=0; i<4; i++) card.cid[i] = card_info[card_no].cid[3-i]; card.numblocks = card_info[card_no].numblocks; card.blocksize = card_info[card_no].block_size; card.size = card_info[card_no].capacity < 0xffffffff ? card_info[card_no].capacity : 0xffffffff; card.block_exp = card_info[card_no].block_exp; temp = card_extract_bits(card.csd, 29, 3); card.speed = mantissa[card_extract_bits(card.csd, 25, 4)] * exponent[temp > 2 ? 7 : temp + 4]; card.nsac = 100 * card_extract_bits(card.csd, 16, 8); temp = card_extract_bits(card.csd, 13, 3); card.tsac = mantissa[card_extract_bits(card.csd, 9, 4)] * exponent[temp] / 10; card.cid[0] = htobe32(card.cid[0]); /* ascii chars here */ card.cid[1] = htobe32(card.cid[1]); /* ascii chars here */ temp = *((char*)card.cid+13); /* adjust year<=>month, 1997 <=> 2000 */ *((char*)card.cid+13) = (unsigned char)((temp >> 4) | (temp << 4)) + 3; return &card; } bool card_detect_target(void) { #ifdef HAVE_HOTSWAP #ifdef SANSA_E200 return (GPIOA_INPUT_VAL & 0x80) == 0; /* low active */ #elif defined SANSA_C200 return (GPIOL_INPUT_VAL & 0x08) != 0; /* high active */ #endif #else return false; #endif } #ifdef HAVE_HOTSWAP static bool sd1_oneshot_callback(struct timeout *tmo) { (void)tmo; /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ if (card_detect_target()) queue_broadcast(SYS_HOTSWAP_INSERTED, 0); else queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); return false; } /* called on insertion/removal interrupt */ void microsd_int(void) { static struct timeout sd1_oneshot; #ifdef SANSA_E200 GPIO_CLEAR_BITWISE(GPIOA_INT_EN, 0x80); GPIOA_INT_LEV = (0x80 << 8) | (~GPIOA_INPUT_VAL & 0x80); GPIOA_INT_CLR = 0x80; GPIO_SET_BITWISE(GPIOA_INT_EN, 0x80); #elif defined SANSA_C200 GPIO_CLEAR_BITWISE(GPIOL_INT_EN, 0x08); GPIOL_INT_LEV = (0x08 << 8) | (~GPIOL_INPUT_VAL & 0x08); GPIOL_INT_CLR = 0x08; GPIO_SET_BITWISE(GPIOL_INT_EN, 0x08); #endif timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0); } #endif /* HAVE_HOTSWAP */