/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * adopted for HD300 by Marcin Bukat * Copyright (C) 2009 by Bertrik Sikken * Copyright (C) 2008 by Robert Kukla * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "rtc.h" #include "i2c-coldfire.h" #include "timefuncs.h" /* Driver for the Seiko S35380A real-time clock chip with i2c interface This driver was derived from rtc_s3539a.c and adapted for the MPIO HD300 */ #define RTC_ADDR 0x60 #define STATUS_REG1 0 #define STATUS_REG2 1 #define REALTIME_DATA1 2 #define REALTIME_DATA2 3 #define INT1_REG 4 #define INT2_REG 5 #define CLOCK_CORR_REG 6 #define FREE_REG 7 /* STATUS_REG1 flags */ #define STATUS_REG1_POC 0x80 #define STATUS_REG1_BLD 0x40 #define STATUS_REG1_INT2 0x20 #define STATUS_REG1_INT1 0x10 #define STATUS_REG1_SC1 0x08 #define STATUS_REG1_SC0 0x04 #define STATUS_REG1_H1224 0x02 #define STATUS_REG1_RESET 0x01 /* STATUS_REG2 flags */ #define STATUS_REG2_TEST 0x80 #define STATUS_REG2_INT2AE 0x40 #define STATUS_REG2_INT2ME 0x20 #define STATUS_REG2_INT2FE 0x10 #define STATUS_REG2_32kE 0x08 #define STATUS_REG2_INT1AE 0x04 #define STATUS_REG2_INT1ME 0x02 #define STATUS_REG2_INT1FE 0x01 /* REALTIME_DATA register bytes */ #define TIME_YEAR 0 #define TIME_MONTH 1 #define TIME_DAY 2 #define TIME_WEEKDAY 3 #define TIME_HOUR 4 #define TIME_MINUTE 5 #define TIME_SECOND 6 #define TIME_REG_SIZE 7 /* INT1, INT2 register bytes */ #define ALARM_WEEKDAY 0 #define ALARM_HOUR 1 #define ALARM_MINUTE 2 #define ALARM_REG_SIZE 3 /* INT1, INT2 register bits */ #define A1WE 0x80 #define A1HE 0x80 #define A1mE 0x80 #define A2WE 0x80 #define A2HE 0x80 #define A2mE 0x80 #define AMPM 0x40 static bool int_flag; /* s35380a chip has reversed bits order in byte * This is little helper function to deal with */ static void reverse_bits(unsigned char* v, int size) { static const unsigned char flipnibble[] = {0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E, 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F}; int i; for (i = 0; i < size; i++) { v[i] = (flipnibble[v[i] & 0x0F] << 4) | flipnibble[(v[i] >> 4) & 0x0F]; } } /* Read 'size' bytes from RTC 'reg' and put data in 'buf' * bits are reversed in data bytes afterwards so they appear in regular order * return i2c transfer code */ static int rtc_read(unsigned char reg, unsigned char *buf, int size) { int rc; rc = i2c_read(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size); reverse_bits(buf, size); return rc; } /* Write 'size' bytes to RTC 'reg' and put data in 'buf' * bits are reversed in data bytes prior to sending them to RTC * return i2c transfer code */ static int rtc_write(unsigned char reg, unsigned char *buf, int size) { int rc; reverse_bits(buf, size); rc = i2c_write(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size); return rc; } /* Reset RTC by writing '1' to RESET bit in STATUS_REG1 */ static inline void rtc_reset(void) { unsigned char reg = STATUS_REG1_RESET; rtc_write(STATUS_REG1, ®, 1); } /* Initialize RTC (according to scheme outlined in datasheet). * Configure chip to 24h time format. */ void rtc_init(void) { unsigned char reg; static bool initialized = false; if ( initialized ) return; rtc_read(STATUS_REG1, ®, 1); /* cache INT1, INT2 flags as reading the register seem to clear * this bits (which is not described in datasheet) */ int_flag = ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2)); /* test POC and BLD flags */ if ( (reg & STATUS_REG1_POC) || (reg & STATUS_REG1_BLD)) rtc_reset(); rtc_read(STATUS_REG2, ®, 1); /* test TEST flag */ if ( reg & STATUS_REG2_TEST ) rtc_reset(); /* setup 24h time format */ reg = STATUS_REG1_H1224; rtc_write(STATUS_REG1, ®, 1); initialized = true; } /* Read realtime data register */ int rtc_read_datetime(struct tm *tm) { unsigned char buf[TIME_REG_SIZE]; unsigned int i; int ret; ret = rtc_read(REALTIME_DATA1, buf, sizeof(buf)); buf[TIME_HOUR] &= 0x3f; /* mask out p.m. flag */ for (i = 0; i < sizeof(buf); i++) buf[i] = BCD2DEC(buf[i]); tm->tm_sec = buf[TIME_SECOND]; tm->tm_min = buf[TIME_MINUTE]; tm->tm_hour = buf[TIME_HOUR]; tm->tm_mday = buf[TIME_DAY]; tm->tm_mon = buf[TIME_MONTH] - 1; tm->tm_year = buf[TIME_YEAR] + 100; set_day_of_week(tm); set_day_of_year(tm); return ret; } /* Write to realtime data register */ int rtc_write_datetime(const struct tm *tm) { unsigned char buf[TIME_REG_SIZE]; unsigned int i; int ret; buf[TIME_SECOND] = tm->tm_sec; buf[TIME_MINUTE] = tm->tm_min; buf[TIME_HOUR] = tm->tm_hour; buf[TIME_WEEKDAY] = tm->tm_wday; buf[TIME_DAY] = tm->tm_mday; buf[TIME_MONTH] = tm->tm_mon + 1; buf[TIME_YEAR] = tm->tm_year - 100; for (i = 0; i < sizeof(buf); i++) buf[i] = DEC2BCD(buf[i]); ret = rtc_write(REALTIME_DATA1, buf, sizeof(buf)); return ret; } #ifdef HAVE_RTC_ALARM /* Set alarm (INT1) data register */ void rtc_set_alarm(int h, int m) { unsigned char buf[ALARM_REG_SIZE]; /* INT1 register can be accessed only when IN1AE flag is set */ rtc_enable_alarm(true); /* A1mE, A1HE - validity flags */ buf[ALARM_MINUTE] = DEC2BCD(m) | A1mE; buf[ALARM_HOUR] = DEC2BCD(h) | A1HE; buf[ALARM_WEEKDAY] = 0; /* AM/PM flag has to be set properly regardles of * time format used (H1224 flag in STATUS_REG1) * this is not described in datasheet for s35380a * but is somehow described in datasheet for s35390a */ if ( h >= 12 ) buf[ALARM_HOUR] |= AMPM; rtc_write(INT1_REG, buf, sizeof(buf)); } /* Read alarm (INT1) data register */ void rtc_get_alarm(int *h, int *m) { unsigned char buf[ALARM_REG_SIZE]; /* INT1 alarm register can be accessed only when INT1AE is set */ rtc_enable_alarm(true); /* read the content of INT1 register */ rtc_read(INT1_REG, buf, sizeof(buf)); *h = BCD2DEC(buf[ALARM_HOUR] & 0x3f); /* mask out A1HE and PM/AM bits */ *m = BCD2DEC(buf[ALARM_MINUTE] & 0x7f); /* mask out A1mE bit */ /* Disable alarm - this is not strictly needed in rockbox * as after rtc_get_alarm() rtc_set_alarm() or rtc_enable_alarm(false) * are called. I just found this weird that simple reading register * changes alarm settings. */ rtc_enable_alarm(false); } /* Check if we just triggered alarm. * We check both INT1 and INT2. Rockbox uses only INT1 but * OF in MPIO HD300 uses both */ bool rtc_check_alarm_flag(void) { unsigned char reg; rtc_read(STATUS_REG1, ®, 1); return ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2)); } /* Enable/disable alarm function */ void rtc_enable_alarm(bool enable) { unsigned char reg = 0; if (enable) reg = STATUS_REG2_INT1AE; rtc_write(STATUS_REG2, ®, 1); } /* Return true if wakeup is due to RTC alarm */ bool rtc_check_alarm_started(bool release_alarm) { static bool run_before; bool rc; if (run_before) { rc = int_flag; int_flag &= ~release_alarm; } else { rc = int_flag; run_before = true; } return rc; } #endif