// Game_Music_Emu $vers. http://www.slack.net/~ant/ // Based on Gens 2.10 ym2612.c #include #include #include #include #include #include "ym2612_emu.h" /* Copyright (C) 2002 Stéphane Dallongeville (gens AT consolemul.com) */ /* Copyright (C) 2004-2007 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // This is mostly the original source in its C style and all. // // Somewhat optimized and simplified. Uses a template to generate the many // variants of Update_Chan. Rewrote header file. In need of full rewrite by // someone more familiar with FM sound and the YM2612. Has some inaccuracies // compared to the Sega Genesis sound, particularly being mixed at such a // high sample accuracy (the Genesis sounds like it has only 8 bit samples). // - Shay // Ported again to c by gama. // Not sure if performance is better than the original c version. #if !defined(YM2612_CALCUL_TABLES) #include "ymtables.h" #endif #ifdef YM2612_CALCUL_TABLES #define FREQ_TAB_LOOKUP g->LFO_FREQ_TAB #define ENV_TAB_LOOKUP g->LFO_ENV_TAB #else #define FREQ_TAB_LOOKUP lfo_freq_coeff #define ENV_TAB_LOOKUP lfo_env_coeff #endif const int output_bits = 14; static const unsigned char DT_DEF_TAB [4 * 32] = { // FD = 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // FD = 1 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, // FD = 2 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 16, 16, 16, 16, // FD = 3 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8 , 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 22, 22, 22 }; static const unsigned char FKEY_TAB [16] = { 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3 }; static const unsigned char LFO_AMS_TAB [4] = { 31, 4, 1, 0 }; static const unsigned char LFO_FMS_TAB [8] = { LFO_FMS_BASE * 0, LFO_FMS_BASE * 1, LFO_FMS_BASE * 2, LFO_FMS_BASE * 3, LFO_FMS_BASE * 4, LFO_FMS_BASE * 6, LFO_FMS_BASE * 12, LFO_FMS_BASE * 24 }; int in0, in1, in2, in3; // current phase calculation // int en0, en1, en2, en3; // current enveloppe calculation static inline void set_seg( struct slot_t* s, int seg ) { s->env_xor = 0; s->env_max = INT_MAX; s->SEG = seg; if ( seg & 4 ) { s->env_xor = ENV_MASK; s->env_max = ENV_MASK; } } static inline void YM2612_Special_Update(void) { } static void KEY_ON( struct channel_* ch, struct tables_t *g, int nsl ) { struct slot_t *SL = &(ch->SLOT [nsl]); // on recupere le bon pointeur de slot if (SL->Ecurp == RELEASE) // la touche est-elle rel'chee ? { SL->Fcnt = 0; // Fix Ecco 2 splash sound SL->Ecnt = (g->DECAY_TO_ATTACK [g->ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK) & SL->ChgEnM; SL->ChgEnM = ~0; // SL->Ecnt = g.DECAY_TO_ATTACK [g.ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK; // SL->Ecnt = 0; SL->Einc = SL->EincA; SL->Ecmp = ENV_DECAY; SL->Ecurp = ATTACK; } } static void KEY_OFF( struct channel_* ch, struct tables_t *g, int nsl ) { struct slot_t *SL = &(ch->SLOT [nsl]); // on recupere le bon pointeur de slot if (SL->Ecurp != RELEASE) // la touche est-elle appuyee ? { if (SL->Ecnt < ENV_DECAY) // attack phase ? { SL->Ecnt = (g->ENV_TAB [SL->Ecnt >> ENV_LBITS] << ENV_LBITS) + ENV_DECAY; } SL->Einc = SL->EincR; SL->Ecmp = ENV_END; SL->Ecurp = RELEASE; } } static int SLOT_SET( struct Ym2612_Impl* impl, int Adr, int data ) { int nch = Adr & 3; if ( nch == 3 ) return 1; struct tables_t *g = &impl->g; struct state_t *YM2612 = &impl->YM2612; struct channel_* ch = &YM2612->CHANNEL [nch + (Adr & 0x100 ? 3 : 0)]; struct slot_t* sl = &ch->SLOT [(Adr >> 2) & 3]; switch ( Adr & 0xF0 ) { case 0x30: if ( (sl->MUL = (data & 0x0F)) != 0 ) sl->MUL <<= 1; else sl->MUL = 1; sl->DT = (int*) g->DT_TAB [(data >> 4) & 7]; ch->SLOT [0].Finc = -1; break; case 0x40: sl->TL = data & 0x7F; // SOR2 do a lot of TL adjustement and this fix R.Shinobi jump sound... YM2612_Special_Update(); #if ((ENV_HBITS - 7) < 0) sl->TLL = sl->TL >> (7 - ENV_HBITS); #else sl->TLL = sl->TL << (ENV_HBITS - 7); #endif break; case 0x50: sl->KSR_S = 3 - (data >> 6); ch->SLOT [0].Finc = -1; if (data &= 0x1F) sl->AR = (int*) &g->AR_TAB [data << 1]; else sl->AR = (int*) &g->NULL_RATE [0]; sl->EincA = sl->AR [sl->KSR]; if (sl->Ecurp == ATTACK) sl->Einc = sl->EincA; break; case 0x60: if ( (sl->AMSon = (data & 0x80)) != 0 ) sl->AMS = ch->AMS; else sl->AMS = 31; if (data &= 0x1F) sl->DR = (int*) &g->DR_TAB [data << 1]; else sl->DR = (int*) &g->NULL_RATE [0]; sl->EincD = sl->DR [sl->KSR]; if (sl->Ecurp == DECAY) sl->Einc = sl->EincD; break; case 0x70: if (data &= 0x1F) sl->SR = (int*) &g->DR_TAB [data << 1]; else sl->SR = (int*) &g->NULL_RATE [0]; sl->EincS = sl->SR [sl->KSR]; if ((sl->Ecurp == SUBSTAIN) && (sl->Ecnt < ENV_END)) sl->Einc = sl->EincS; break; case 0x80: sl->SLL = g->SL_TAB [data >> 4]; sl->RR = (int*) &g->DR_TAB [((data & 0xF) << 2) + 2]; sl->EincR = sl->RR [sl->KSR]; if ((sl->Ecurp == RELEASE) && (sl->Ecnt < ENV_END)) sl->Einc = sl->EincR; break; case 0x90: // SSG-EG envelope shapes : /* E At Al H 1 0 0 0 \\\\ 1 0 0 1 \___ 1 0 1 0 \/\/ 1 0 1 1 \ 1 1 0 0 //// 1 1 0 1 / 1 1 1 0 /\/\ 1 1 1 1 /___ E = SSG-EG enable At = Start negate Al = Altern H = Hold */ set_seg( sl, (data & 8) ? (data & 0x0F) : 0 ); break; } return 0; } static int CHANNEL_SET( struct state_t* YM2612, int Adr, int data ) { int num = Adr & 3; if ( num == 3 ) return 1; struct channel_* ch = &YM2612->CHANNEL [num + (Adr & 0x100 ? 3 : 0)]; switch ( Adr & 0xFC ) { case 0xA0: YM2612_Special_Update(); ch->FNUM [0] = (ch->FNUM [0] & 0x700) + data; ch->KC [0] = (ch->FOCT [0] << 2) | FKEY_TAB [ch->FNUM [0] >> 7]; ch->SLOT [0].Finc = -1; break; case 0xA4: YM2612_Special_Update(); ch->FNUM [0] = (ch->FNUM [0] & 0x0FF) + ((data & 0x07) << 8); ch->FOCT [0] = (data & 0x38) >> 3; ch->KC [0] = (ch->FOCT [0] << 2) | FKEY_TAB [ch->FNUM [0] >> 7]; ch->SLOT [0].Finc = -1; break; case 0xA8: if ( Adr < 0x100 ) { num++; YM2612_Special_Update(); YM2612->CHANNEL [2].FNUM [num] = (YM2612->CHANNEL [2].FNUM [num] & 0x700) + data; YM2612->CHANNEL [2].KC [num] = (YM2612->CHANNEL [2].FOCT [num] << 2) | FKEY_TAB [YM2612->CHANNEL [2].FNUM [num] >> 7]; YM2612->CHANNEL [2].SLOT [0].Finc = -1; } break; case 0xAC: if ( Adr < 0x100 ) { num++; YM2612_Special_Update(); YM2612->CHANNEL [2].FNUM [num] = (YM2612->CHANNEL [2].FNUM [num] & 0x0FF) + ((data & 0x07) << 8); YM2612->CHANNEL [2].FOCT [num] = (data & 0x38) >> 3; YM2612->CHANNEL [2].KC [num] = (YM2612->CHANNEL [2].FOCT [num] << 2) | FKEY_TAB [YM2612->CHANNEL [2].FNUM [num] >> 7]; YM2612->CHANNEL [2].SLOT [0].Finc = -1; } break; case 0xB0: if ( ch->ALGO != (data & 7) ) { // Fix VectorMan 2 heli sound (level 1) YM2612_Special_Update(); ch->ALGO = data & 7; ch->SLOT [0].ChgEnM = 0; ch->SLOT [1].ChgEnM = 0; ch->SLOT [2].ChgEnM = 0; ch->SLOT [3].ChgEnM = 0; } ch->FB = 9 - ((data >> 3) & 7); // Real thing ? // if (ch->FB = ((data >> 3) & 7)) ch->FB = 9 - ch->FB; // Thunder force 4 (music stage 8), Gynoug, Aladdin bug sound... // else ch->FB = 31; break; case 0xB4: { YM2612_Special_Update(); ch->LEFT = 0 - ((data >> 7) & 1); ch->RIGHT = 0 - ((data >> 6) & 1); ch->AMS = LFO_AMS_TAB [(data >> 4) & 3]; ch->FMS = LFO_FMS_TAB [data & 7]; int i; for ( i = 0; i < 4; i++ ) { struct slot_t* sl = &ch->SLOT [i]; sl->AMS = (sl->AMSon ? ch->AMS : 31); } break; } } return 0; } static int YM_SET( struct Ym2612_Impl* impl, int Adr, int data ) { struct state_t* YM2612 = &impl->YM2612; struct tables_t* g = &impl->g; switch ( Adr ) { case 0x22: if (data & 8) // LFO enable { // Cool Spot music 1, LFO modified severals time which // distord the sound, have to check that on a real genesis... g->LFOinc = g->LFO_INC_TAB [data & 7]; } else { g->LFOinc = g->LFOcnt = 0; } break; case 0x24: YM2612->TimerA = (YM2612->TimerA & 0x003) | (((int) data) << 2); if (YM2612->TimerAL != (1024 - YM2612->TimerA) << 12) { YM2612->TimerAcnt = YM2612->TimerAL = (1024 - YM2612->TimerA) << 12; } break; case 0x25: YM2612->TimerA = (YM2612->TimerA & 0x3FC) | (data & 3); if (YM2612->TimerAL != (1024 - YM2612->TimerA) << 12) { YM2612->TimerAcnt = YM2612->TimerAL = (1024 - YM2612->TimerA) << 12; } break; case 0x26: YM2612->TimerB = data; if (YM2612->TimerBL != (256 - YM2612->TimerB) << (4 + 12)) { YM2612->TimerBcnt = YM2612->TimerBL = (256 - YM2612->TimerB) << (4 + 12); } break; case 0x27: // Parametre divers // b7 = CSM MODE // b6 = 3 slot mode // b5 = reset b // b4 = reset a // b3 = timer enable b // b2 = timer enable a // b1 = load b // b0 = load a if ((data ^ YM2612->Mode) & 0x40) { // We changed the channel 2 mode, so recalculate phase step // This fix the punch sound in Street of Rage 2 YM2612_Special_Update(); YM2612->CHANNEL [2].SLOT [0].Finc = -1; // recalculate phase step } // if ((data & 2) && (YM2612->Status & 2)) YM2612->TimerBcnt = YM2612->TimerBL; // if ((data & 1) && (YM2612->Status & 1)) YM2612->TimerAcnt = YM2612->TimerAL; // YM2612->Status &= (~data >> 4); // Reset du Status au cas ou c'est demande YM2612->Status &= (~data >> 4) & (data >> 2); // Reset Status YM2612->Mode = data; break; case 0x28: { int nch = data & 3; if ( nch == 3 ) return 1; if ( data & 4 ) nch += 3; struct channel_* ch = &YM2612->CHANNEL [nch]; YM2612_Special_Update(); if (data & 0x10) KEY_ON(ch, g, S0); // On appuie sur la touche pour le slot 1 else KEY_OFF(ch, g, S0); // On rel'che la touche pour le slot 1 if (data & 0x20) KEY_ON(ch, g, S1); // On appuie sur la touche pour le slot 3 else KEY_OFF(ch, g, S1); // On rel'che la touche pour le slot 3 if (data & 0x40) KEY_ON(ch, g, S2); // On appuie sur la touche pour le slot 2 else KEY_OFF(ch, g, S2); // On rel'che la touche pour le slot 2 if (data & 0x80) KEY_ON(ch, g, S3); // On appuie sur la touche pour le slot 4 else KEY_OFF(ch, g, S3); // On rel'che la touche pour le slot 4 break; } case 0x2B: if (YM2612->DAC ^ (data & 0x80)) YM2612_Special_Update(); YM2612->DAC = data & 0x80; // activation/desactivation du DAC break; } return 0; } void impl_reset( struct Ym2612_Impl* impl ); static void impl_set_rate( struct Ym2612_Impl* impl, int sample_rate, int clock_rate ) { assert( sample_rate ); assert( !clock_rate || clock_rate > sample_rate ); int i; // 144 = 12 * (prescale * 2) = 12 * 6 * 2 // prescale set to 6 by default int Frequency = (clock_rate ? (int)((FP_ONE_CLOCK * clock_rate) / sample_rate / 144) : (int)FP_ONE_CLOCK); if ( abs( Frequency - FP_ONE_CLOCK ) < 1 ) Frequency = FP_ONE_CLOCK; impl->YM2612.TimerBase = Frequency; /* double Frequence = (double)Frequency / FP_ONE_CLOCK; */ // Tableau TL : // [0 - 4095] = +output [4095 - ...] = +output overflow (fill with 0) // [12288 - 16383] = -output [16384 - ...] = -output overflow (fill with 0) #ifdef YM2612_USE_TL_TAB for ( i = 0; i < TL_LENGHT; i++ ) { if (i >= PG_CUT_OFF) // YM2612 cut off sound after 78 dB (14 bits output ?) { impl->g.TL_TAB [TL_LENGHT + i] = impl->g.TL_TAB [i] = 0; } else { // Decibel -> Voltage #ifdef YM2612_CALCUL_TABLES impl->g.TL_TAB [i] = (int) (MAX_OUT / pow( 10.0, ENV_STEP / 20.0f * i )); #else impl->g.TL_TAB [i] = tl_coeff [i]; #endif impl->g.TL_TAB [TL_LENGHT + i] = -impl->g.TL_TAB [i]; } } #endif // Tableau SIN : // impl->g.SIN_TAB [x] [y] = sin(x) * y; // x = phase and y = volume impl->g.SIN_TAB [0] = impl->g.SIN_TAB [SIN_LENGHT / 2] = PG_CUT_OFF; for ( i = 1; i <= SIN_LENGHT / 4; i++ ) { // Sinus in dB #ifdef YM2612_CALCUL_TABLES double x = 20 * log10( 1 / sin( 2.0 * PI * i / SIN_LENGHT ) ); // convert to dB int j = (int) (x / ENV_STEP); // Get TL range if (j > PG_CUT_OFF) j = (int) PG_CUT_OFF; #else int j = sindb_coeff [i-1]; #endif impl->g.SIN_TAB [i] = impl->g.SIN_TAB [(SIN_LENGHT / 2) - i] = j; impl->g.SIN_TAB [(SIN_LENGHT / 2) + i] = impl->g.SIN_TAB [SIN_LENGHT - i] = TL_LENGHT + j; } #ifdef YM2612_CALCUL_TABLES // Tableau LFO (LFO wav) : for ( i = 0; i < LFO_LENGHT; i++ ) { double x = 1 + sin( 2.0 * PI * i * (1.0 / LFO_LENGHT) ); // Sinus x *= 11.8 / ENV_STEP / 2; // ajusted to MAX enveloppe modulation impl->g.LFO_ENV_TAB [i] = (int) x; x = sin( 2.0 * PI * i * (1.0 / LFO_LENGHT) ); // Sinus x *= (1 << (LFO_HBITS - 1)) - 1; impl->g.LFO_FREQ_TAB [i] = (int) x; } #endif // Tableau Enveloppe : // impl->g.ENV_TAB [0] -> impl->g.ENV_TAB [ENV_LENGHT - 1] = attack curve // impl->g.ENV_TAB [ENV_LENGHT] -> impl->g.ENV_TAB [2 * ENV_LENGHT - 1] = decay curve for ( i = 0; i < ENV_LENGHT; i++ ) { // Attack curve (x^8 - music level 2 Vectorman 2) #if defined(ROCKBOX) int k; int prescale = (31 - 2*ENV_HBITS); /* used to gain higher precision */ int x = ENV_LENGHT * (1 << prescale); for ( k = 0; k < 8; ++k) { x = ( x * ((ENV_LENGHT - 1) - i) ) / ENV_LENGHT; } x >>= prescale; #else double x = pow( ((ENV_LENGHT - 1) - i) / (double) ENV_LENGHT, 8.0 ); x *= ENV_LENGHT; #endif impl->g.ENV_TAB [i] = (int) x; // Decay curve (just linear) impl->g.ENV_TAB [ENV_LENGHT + i] = i; } for ( i = 0; i < 8; i++ ) impl->g.ENV_TAB [i + ENV_LENGHT * 2] = 0; impl->g.ENV_TAB [ENV_END >> ENV_LBITS] = ENV_LENGHT - 1; // for the stopped state // Tableau pour la conversion Attack -> Decay and Decay -> Attack int j = ENV_LENGHT - 1; for ( i = 0; i < ENV_LENGHT; i++ ) { while ( j && impl->g.ENV_TAB [j] < i ) j--; impl->g.DECAY_TO_ATTACK [i] = j << ENV_LBITS; } // Tableau pour le Substain Level for ( i = 0; i < 15; i++ ) { int x = i * 3 * (int)( (1 << ENV_LBITS) / ENV_STEP); // 3 and not 6 (Mickey Mania first music for test) impl->g.SL_TAB [i] = x + ENV_DECAY; } impl->g.SL_TAB [15] = ((ENV_LENGHT - 1) << ENV_LBITS) + ENV_DECAY; // special case : volume off // Tableau Frequency Step { // * 1 / 2 because MUL = value * 2 #if SIN_LBITS + SIN_HBITS - (21 - 7) < 0 /* double const factor = Frequence / 2.0 / (1 << ((21 - 7) - SIN_LBITS - SIN_HBITS)); */ int const factor = (int)(Frequency / 2 / (1 << ((21 - 7) - SIN_LBITS - SIN_HBITS)) / FP_ONE_CLOCK); #else /* double const factor = Frequence / 2.0 * (1 << (SIN_LBITS + SIN_HBITS - (21 - 7))); */ int const factor = (int)(Frequency / 2 * (1 << (SIN_LBITS + SIN_HBITS - (21 - 7))) / FP_ONE_CLOCK); #endif for ( i = 0; i < 2048; i++ ) { impl->g.FINC_TAB [i] = i * factor; } } // Tableaux Attack & Decay Rate for ( i = 0; i < 4; i++ ) { impl->g.AR_TAB [i] = 0; impl->g.DR_TAB [i] = 0; } for ( i = 0; i < 60; i++ ) { long long x = (4LL + ((i & 3))) * // bits 0-1 : 4*(x1.00, x1.25, x1.50, x1.75) (ENV_LENGHT << ENV_LBITS) * // on ajuste pour le tableau impl->g.ENV_TAB Frequency * (1 << (i >> 2)) / // bits 2-5 : shift bits (x2^0 - x2^15) FP_ONE_CLOCK / 4; long long x_AR = x / AR_RATE; long long x_DR = x / DR_RATE; impl->g.AR_TAB [i + 4] = (unsigned int) ( x_AR > ((1LL<<32) - 1) ? ((1LL<<32) - 1) : x_AR ); impl->g.DR_TAB [i + 4] = (unsigned int) ( x_DR > ((1LL<<32) - 1) ? ((1LL<<32) - 1) : x_DR ); } for ( i = 64; i < 96; i++ ) { impl->g.AR_TAB [i] = impl->g.AR_TAB [63]; impl->g.DR_TAB [i] = impl->g.DR_TAB [63]; impl->g.NULL_RATE [i - 64] = 0; } for ( i = 96; i < 128; i++ ) impl->g.AR_TAB [i] = 0; // Tableau Detune { #if SIN_LBITS + SIN_HBITS - 21 < 0 /* double const factor = 1.0 / (1 << (21 - SIN_LBITS - SIN_HBITS)) * Frequence; */ int const factor = Frequency / (1 << (21 - SIN_LBITS - SIN_HBITS)) / FP_ONE_CLOCK; #else /* double const factor = (1 << (SIN_LBITS + SIN_HBITS - 21)) * Frequence; */ int const factor = Frequency * (1 << (SIN_LBITS + SIN_HBITS - 21)) / FP_ONE_CLOCK; #endif for ( i = 0; i < 4; i++ ) { int j; for ( j = 0; j < 32; j++ ) { /* double y = DT_DEF_TAB [(i << 5) + j] * factor; */ int y = DT_DEF_TAB [(i << 5) + j] * factor; impl->g.DT_TAB [i + 0] [j] = (int) y; impl->g.DT_TAB [i + 4] [j] = (int) -y; } } } // Tableau LFO impl->g.LFO_INC_TAB [0] = (int) (3.98 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [1] = (int) (5.56 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [2] = (int) (6.02 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [3] = (int) (6.37 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [4] = (int) (6.88 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [5] = (int) (9.63 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [6] = (int) (48.1 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl->g.LFO_INC_TAB [7] = (int) (72.2 * (1 << (LFO_HBITS + LFO_LBITS))) / sample_rate; impl_reset( impl ); } const char* Ym2612_set_rate( struct Ym2612_Emu* this, int sample_rate, int clock_rate ) { // Only set rates if necessary #if defined(ROCKBOX) static int last_sample_rate = 0, last_clock_rate = 0; if (last_sample_rate == sample_rate && last_clock_rate == clock_rate) return 0; #endif memset( &this->impl.YM2612, 0, sizeof this->impl.YM2612 ); impl_set_rate( &this->impl, sample_rate, clock_rate ); return 0; } static inline void write0( struct Ym2612_Impl* impl, int opn_addr, int data ) { assert( (unsigned) data <= 0xFF ); if ( opn_addr < 0x30 ) { impl->YM2612.REG [0] [opn_addr] = data; YM_SET( impl, opn_addr, data ); } else if ( impl->YM2612.REG [0] [opn_addr] != data ) { impl->YM2612.REG [0] [opn_addr] = data; if ( opn_addr < 0xA0 ) SLOT_SET( impl, opn_addr, data ); else CHANNEL_SET( &impl->YM2612, opn_addr, data ); } } static inline void write1( struct Ym2612_Impl* impl, int opn_addr, int data ) { assert( (unsigned) data <= 0xFF ); if ( opn_addr >= 0x30 && impl->YM2612.REG [1] [opn_addr] != data ) { impl->YM2612.REG [1] [opn_addr] = data; if ( opn_addr < 0xA0 ) SLOT_SET( impl, opn_addr + 0x100, data ); else CHANNEL_SET( &impl->YM2612, opn_addr + 0x100, data ); } } void impl_reset( struct Ym2612_Impl* impl ) { impl->g.LFOcnt = 0; impl->YM2612.TimerA = 0; impl->YM2612.TimerAL = 0; impl->YM2612.TimerAcnt = 0; impl->YM2612.TimerB = 0; impl->YM2612.TimerBL = 0; impl->YM2612.TimerBcnt = 0; impl->YM2612.DAC = 0; impl->YM2612.Status = 0; int i; for ( i = 0; i < ym2612_channel_count; i++ ) { struct channel_* ch = &impl->YM2612.CHANNEL [i]; ch->LEFT = ~0; ch->RIGHT = ~0; ch->ALGO = 0; ch->FB = 31; ch->FMS = 0; ch->AMS = 0; int j; for ( j = 0 ;j < 4 ; j++ ) { ch->S0_OUT [j] = 0; ch->FNUM [j] = 0; ch->FOCT [j] = 0; ch->KC [j] = 0; ch->SLOT [j].Fcnt = 0; ch->SLOT [j].Finc = 0; ch->SLOT [j].Ecnt = ENV_END; // Put it at the end of Decay phase... ch->SLOT [j].Einc = 0; ch->SLOT [j].Ecmp = 0; ch->SLOT [j].Ecurp = RELEASE; ch->SLOT [j].ChgEnM = 0; } } for ( i = 0; i < 0x100; i++ ) { impl->YM2612.REG [0] [i] = -1; impl->YM2612.REG [1] [i] = -1; } for ( i = 0xB6; i >= 0xB4; i-- ) { write0( impl, i, 0xC0 ); write1( impl, i, 0xC0 ); } for ( i = 0xB2; i >= 0x22; i-- ) { write0( impl, i, 0 ); write1( impl, i, 0 ); } write0( impl, 0x2A, 0x80 ); } void Ym2612_reset( struct Ym2612_Emu* this ) { impl_reset( &this->impl ); } void Ym2612_write0( struct Ym2612_Emu* this, int addr, int data ) { write0( &this->impl, addr, data ); } void Ym2612_write1( struct Ym2612_Emu* this, int addr, int data ) { write1( &this->impl, addr, data ); } void Ym2612_mute_voices( struct Ym2612_Emu* this, int mask ) { this->impl.mute_mask = mask; } static void update_envelope_( struct slot_t* sl ) { switch ( sl->Ecurp ) { case 0: // Env_Attack_Next // Verified with Gynoug even in HQ (explode SFX) sl->Ecnt = ENV_DECAY; sl->Einc = sl->EincD; sl->Ecmp = sl->SLL; sl->Ecurp = DECAY; break; case 1: // Env_Decay_Next // Verified with Gynoug even in HQ (explode SFX) sl->Ecnt = sl->SLL; sl->Einc = sl->EincS; sl->Ecmp = ENV_END; sl->Ecurp = SUBSTAIN; break; case 2: // Env_Substain_Next(slot_t *SL) if (sl->SEG & 8) // SSG envelope type { int release = sl->SEG & 1; if ( !release ) { // re KEY ON // sl->Fcnt = 0; // sl->ChgEnM = ~0; sl->Ecnt = 0; sl->Einc = sl->EincA; sl->Ecmp = ENV_DECAY; sl->Ecurp = ATTACK; } set_seg( sl, (sl->SEG << 1) & 4 ); if ( !release ) break; } // fall through case 3: // Env_Release_Next sl->Ecnt = ENV_END; sl->Einc = 0; sl->Ecmp = ENV_END + 1; break; // default: no op } } static inline void update_envelope( struct slot_t* sl ) { int ecmp = sl->Ecmp; if ( (sl->Ecnt += sl->Einc) >= ecmp ) update_envelope_( sl ); } typedef void (*ym2612_update_chan_t)( struct tables_t*, struct channel_*, short*, int ); #define GET_CURRENT_PHASE \ int in0 = ch->SLOT[S0].Fcnt; \ int in1 = ch->SLOT[S1].Fcnt; \ int in2 = ch->SLOT[S2].Fcnt; \ int in3 = ch->SLOT[S3].Fcnt; \ #define GET_CURRENT_LFO \ int YM2612_LFOinc = g->LFOinc; \ int YM2612_LFOcnt = g->LFOcnt + YM2612_LFOinc; #define CALC_EN( x ) \ int temp##x = ENV_TAB [ch->SLOT [S##x].Ecnt >> ENV_LBITS] + ch->SLOT [S##x].TLL; \ int en##x = ((temp##x ^ ch->SLOT [S##x].env_xor) + (env_LFO >> ch->SLOT [S##x].AMS)) & \ ((temp##x - ch->SLOT [S##x].env_max) >> 31); #define GET_ENV \ int const env_LFO = ENV_TAB_LOOKUP [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK]; \ short const* const ENV_TAB = g->ENV_TAB; \ CALC_EN( 0 ) \ CALC_EN( 1 ) \ CALC_EN( 2 ) \ CALC_EN( 3 ) #ifndef YM2612_USE_TL_TAB static inline int tl_level( int i ) { if (i >= (PG_CUT_OFF + TL_LENGHT)) { return 0; } else if (i >= TL_LENGHT) { return -tl_coeff [i - TL_LENGHT]; } else if (i >= PG_CUT_OFF) { return 0; } else return tl_coeff [i]; } #define SINT( i, o ) (tl_level (g->SIN_TAB [(i)] + (o))) #else #define SINT( i, o ) (g->TL_TAB [g->SIN_TAB [(i)] + (o)]) #endif #define DO_FEEDBACK \ int CH_S0_OUT_0 = ch->S0_OUT [0]; \ { \ int temp = in0 + ((CH_S0_OUT_0 + CH_S0_OUT_1) >> ch->FB); \ CH_S0_OUT_1 = CH_S0_OUT_0; \ CH_S0_OUT_0 = SINT( (temp >> SIN_LBITS) & SIN_MASK, en0 ); \ } \ #define DO_LIMIT \ CH_OUTd >>= MAX_OUT_BITS - output_bits + 2; \ #define UPDATE_PHASE_CYCLE \ unsigned freq_LFO = ((FREQ_TAB_LOOKUP [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK] * \ ch->FMS) >> (LFO_HBITS - 1 + 1)) + (1 << (LFO_FMS_LBITS - 1)); \ YM2612_LFOcnt += YM2612_LFOinc; \ in0 += (ch->SLOT [S0].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); \ in1 += (ch->SLOT [S1].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); \ in2 += (ch->SLOT [S2].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); \ in3 += (ch->SLOT [S3].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); #define UPDATE_ENV \ int t0 = buf [0] + (CH_OUTd & ch->LEFT); \ int t1 = buf [1] + (CH_OUTd & ch->RIGHT); \ update_envelope( &ch->SLOT [0] ); \ update_envelope( &ch->SLOT [1] ); \ update_envelope( &ch->SLOT [2] ); \ update_envelope( &ch->SLOT [3] ); #define DO_OUTPUT_0 \ ch->S0_OUT [0] = CH_S0_OUT_0; \ buf [0] = t0; \ buf [1] = t1; \ buf += 2; \ #define DO_OUTPUT_1 \ ch->S0_OUT [1] = CH_S0_OUT_1; #define UPDATE_PHASE \ ch->SLOT [S0].Fcnt = in0; \ ch->SLOT [S1].Fcnt = in1; \ ch->SLOT [S2].Fcnt = in2; \ ch->SLOT [S3].Fcnt = in3; static void ym2612_update_chan0( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = in1 + CH_S0_OUT_1; temp = in2 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan1( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = in2 + CH_S0_OUT_1 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan2( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = in2 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + CH_S0_OUT_1 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan3( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = in1 + CH_S0_OUT_1; temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan4( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; not_end |= ch->SLOT [S1].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = in3 + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan5( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; not_end |= ch->SLOT [S2].Ecnt - ENV_END; not_end |= ch->SLOT [S1].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; int temp = CH_S0_OUT_1; CH_OUTd = SINT( ((in3 + temp) >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + temp) >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( ((in2 + temp) >> SIN_LBITS) & SIN_MASK, en2 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan6( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; not_end |= ch->SLOT [S2].Ecnt - ENV_END; not_end |= ch->SLOT [S1].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void ym2612_update_chan7( struct tables_t* g, struct channel_* ch, short* buf, int length ) { int not_end = ch->SLOT [S3].Ecnt - ENV_END; not_end |= ch->SLOT [S0].Ecnt - ENV_END; not_end |= ch->SLOT [S2].Ecnt - ENV_END; not_end |= ch->SLOT [S1].Ecnt - ENV_END; int CH_S0_OUT_1 = ch->S0_OUT [1]; GET_CURRENT_PHASE GET_CURRENT_LFO if ( !not_end ) return; do { GET_ENV DO_FEEDBACK int CH_OUTd; CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ) + CH_S0_OUT_1; DO_LIMIT UPDATE_PHASE_CYCLE UPDATE_ENV DO_OUTPUT_0 } while ( --length ); DO_OUTPUT_1 UPDATE_PHASE } static void (*UPDATE_CHAN[8])(struct tables_t* g, struct channel_* ch, short* buf, int length) = { (void *)ym2612_update_chan0, (void *)ym2612_update_chan1, (void *)ym2612_update_chan2, (void *)ym2612_update_chan3, (void *)ym2612_update_chan4, (void *)ym2612_update_chan5, (void *)ym2612_update_chan6, (void *)ym2612_update_chan7 }; static void run_timer( struct Ym2612_Impl* impl, int length ) { int const step = 6; int remain = length; do { int n = step; if ( n > remain ) n = remain; remain -= n; int i = n * impl->YM2612.TimerBase; if (impl->YM2612.Mode & 1) // Timer A ON ? { // if ((impl->YM2612.TimerAcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL) if ((impl->YM2612.TimerAcnt -= i) <= 0) { // timer a overflow impl->YM2612.Status |= (impl->YM2612.Mode & 0x04) >> 2; impl->YM2612.TimerAcnt += impl->YM2612.TimerAL; if (impl->YM2612.Mode & 0x80) { KEY_ON( &impl->YM2612.CHANNEL [2], &impl->g, 0 ); KEY_ON( &impl->YM2612.CHANNEL [2], &impl->g, 1 ); KEY_ON( &impl->YM2612.CHANNEL [2], &impl->g, 2 ); KEY_ON( &impl->YM2612.CHANNEL [2], &impl->g, 3 ); } } } if (impl->YM2612.Mode & 2) // Timer B ON ? { // if ((impl->YM2612.TimerBcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL) if ((impl->YM2612.TimerBcnt -= i) <= 0) { // timer b overflow impl->YM2612.Status |= (impl->YM2612.Mode & 0x08) >> 2; impl->YM2612.TimerBcnt += impl->YM2612.TimerBL; } } } while ( remain > 0 ); } static void impl_run( struct Ym2612_Impl* impl, int pair_count, short out [] ) { if ( pair_count <= 0 ) return; if ( impl->YM2612.Mode & 3 ) run_timer( impl, pair_count ); // Mise à jour des pas des compteurs-frequences s'ils ont ete modifies int chi; for ( chi = 0; chi < ym2612_channel_count; chi++ ) { struct channel_* ch = &impl->YM2612.CHANNEL [chi]; if ( ch->SLOT [0].Finc != -1 ) continue; int i2 = 0; if ( chi == 2 && (impl->YM2612.Mode & 0x40) ) i2 = 2; int i; for ( i = 0; i < 4; i++ ) { // static int seq [4] = { 2, 1, 3, 0 }; // if ( i2 ) i2 = seq [i]; struct slot_t* sl = &ch->SLOT [i]; int finc = impl->g.FINC_TAB [ch->FNUM [i2]] >> (7 - ch->FOCT [i2]); int ksr = ch->KC [i2] >> sl->KSR_S; // keycode attenuation sl->Finc = (finc + sl->DT [ch->KC [i2]]) * sl->MUL; if (sl->KSR != ksr) // si le KSR a change alors { // les differents taux pour l'enveloppe sont mis à jour sl->KSR = ksr; sl->EincA = sl->AR [ksr]; sl->EincD = sl->DR [ksr]; sl->EincS = sl->SR [ksr]; sl->EincR = sl->RR [ksr]; if (sl->Ecurp == ATTACK) { sl->Einc = sl->EincA; } else if (sl->Ecurp == DECAY) { sl->Einc = sl->EincD; } else if (sl->Ecnt < ENV_END) { if (sl->Ecurp == SUBSTAIN) sl->Einc = sl->EincS; else if (sl->Ecurp == RELEASE) sl->Einc = sl->EincR; } } if ( i2 ) i2 = (i2 ^ 2) ^ (i2 >> 1); } } int i; for ( i = 0; i < ym2612_channel_count; i++ ) { if ( !(impl->mute_mask & (1 << i)) && (i != 5 || !impl->YM2612.DAC) ) UPDATE_CHAN [impl->YM2612.CHANNEL [i].ALGO]( &impl->g, &impl->YM2612.CHANNEL [i], out, pair_count ); } impl->g.LFOcnt += impl->g.LFOinc * pair_count; } void Ym2612_run( struct Ym2612_Emu* this, int pair_count, short out [] ) { impl_run( &this->impl, pair_count, out ); }