/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "opus_config.h" #endif #include #include "modes.h" #include "cwrs.h" #include "arch.h" #include "os_support.h" #include "entcode.h" #include "rate.h" static const unsigned char LOG2_FRAC_TABLE[24]={ 0, 8,13, 16,19,21,23, 24,26,27,28,29,30,31,32, 32,33,34,34,35,36,36,37,37 }; #ifdef CUSTOM_MODES /*Determines if V(N,K) fits in a 32-bit unsigned integer. N and K are themselves limited to 15 bits.*/ static int fits_in32(int _n, int _k) { static const opus_int16 maxN[15] = { 32767, 32767, 32767, 1476, 283, 109, 60, 40, 29, 24, 20, 18, 16, 14, 13}; static const opus_int16 maxK[15] = { 32767, 32767, 32767, 32767, 1172, 238, 95, 53, 36, 27, 22, 18, 16, 15, 13}; if (_n>=14) { if (_k>=14) return 0; else return _n <= maxN[_k]; } else { return _k <= maxK[_n]; } } void compute_pulse_cache(CELTMode *m, int LM) { int C; int i; int j; int curr=0; int nbEntries=0; int entryN[100], entryK[100], entryI[100]; const opus_int16 *eBands = m->eBands; PulseCache *cache = &m->cache; opus_int16 *cindex; unsigned char *bits; unsigned char *cap; cindex = (opus_int16 *)opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2)); cache->index = cindex; /* Scan for all unique band sizes */ for (i=0;i<=LM+1;i++) { for (j=0;jnbEBands;j++) { int k; int N = (eBands[j+1]-eBands[j])<>1; cindex[i*m->nbEBands+j] = -1; /* Find other bands that have the same size */ for (k=0;k<=i;k++) { int n; for (n=0;nnbEBands && (k!=i || n>1) { cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n]; break; } } } if (cache->index[i*m->nbEBands+j] == -1 && N!=0) { int K; entryN[nbEntries] = N; K = 0; while (fits_in32(N,get_pulses(K+1)) && KnbEBands+j] = curr; entryI[nbEntries] = curr; curr += K+1; nbEntries++; } } } bits = (unsigned char *)opus_alloc(sizeof(unsigned char)*curr); cache->bits = bits; cache->size = curr; /* Compute the cache for all unique sizes */ for (i=0;icaps = cap = (unsigned char *)opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands); for (i=0;i<=LM;i++) { for (C=1;C<=2;C++) { for (j=0;jnbEBands;j++) { int N0; int max_bits; N0 = m->eBands[j+1]-m->eBands[j]; /* N=1 bands only have a sign bit and fine bits. */ if (N0<1 are even, including custom modes.*/ if (N0 > 2) { N0>>=1; LM0--; } /* N0=1 bands can't be split down to N<2. */ else if (N0 <= 1) { LM0=IMIN(i,1); N0<<=LM0; } /* Compute the cost for the lowest-level PVQ of a fully split band. */ pcache = bits + cindex[(LM0+1)*m->nbEBands+j]; max_bits = pcache[pcache[0]]+1; /* Add in the cost of coding regular splits. */ N = N0; for(k=0;klogN[j]+((LM0+k)<>1)-QTHETA_OFFSET; /* The number of qtheta bits we'll allocate if the remainder is to be max_bits. The average measured cost for theta is 0.89701 times qb, approximated here as 459/512. */ num=459*(opus_int32)((2*N-1)*offset+max_bits); den=((opus_int32)(2*N-1)<<9)-459; qb = IMIN((num+(den>>1))/den, 57); celt_assert(qb >= 0); max_bits += qb; N <<= 1; } /* Add in the cost of a stereo split, if necessary. */ if (C==2) { max_bits <<= 1; offset = ((m->logN[j]+(i<>1)-(N==2?QTHETA_OFFSET_TWOPHASE:QTHETA_OFFSET); ndof = 2*N-1-(N==2); /* The average measured cost for theta with the step PDF is 0.95164 times qb, approximated here as 487/512. */ num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset); den = ((opus_int32)ndof<<9)-(N==2?512:487); qb = IMIN((num+(den>>1))/den, (N==2?64:61)); celt_assert(qb >= 0); max_bits += qb; } /* Add the fine bits we'll use. */ /* Compensate for the extra DoF in stereo */ ndof = C*N + ((C==2 && N>2) ? 1 : 0); /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET compared to their "fair share" of total/N */ offset = ((m->logN[j] + (i<>1)-FINE_OFFSET; /* N=2 is the only point that doesn't match the curve */ if (N==2) offset += 1<>2; /* The number of fine bits we'll allocate if the remainder is to be max_bits. */ num = max_bits+ndof*offset; den = (ndof-1)<>1))/den, MAX_FINE_BITS); celt_assert(qb >= 0); max_bits += C*qb<eBands[j+1]-m->eBands[j])<= 0); celt_assert(max_bits < 256); *cap++ = (unsigned char)max_bits; } } } } #endif /* CUSTOM_MODES */ #define ALLOC_STEPS 6 static inline int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start, const int *bits1, const int *bits2, const int *thresh, const int *cap, opus_int32 total, opus_int32 *_balance, int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits, int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int prev) { opus_int32 psum; int lo, hi; int i, j; int logM; int stereo; int codedBands=-1; int alloc_floor; opus_int32 left, percoeff; int done; opus_int32 balance; SAVE_STACK; alloc_floor = C<1; logM = LM<>1; psum = 0; done = 0; for (j=end;j-->start;) { int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS); if (tmp >= thresh[j] || done) { done = 1; /* Don't allocate more than we can actually use */ psum += IMIN(tmp, cap[j]); } else { if (tmp >= alloc_floor) psum += alloc_floor; } } if (psum > total) hi = mid; else lo = mid; } psum = 0; /*printf ("interp bisection gave %d\n", lo);*/ done = 0; for (j=end;j-->start;) { int tmp = bits1[j] + (lo*bits2[j]>>ALLOC_STEPS); if (tmp < thresh[j] && !done) { if (tmp >= alloc_floor) tmp = alloc_floor; else tmp = 0; } else done = 1; /* Don't allocate more than we can actually use */ tmp = IMIN(tmp, cap[j]); bits[j] = tmp; psum += tmp; } /* Decide which bands to skip, working backwards from the end. */ for (codedBands=end;;codedBands--) { int band_width; int band_bits; int rem; j = codedBands-1; /* Never skip the first band, nor a band that has been boosted by dynalloc. In the first case, we'd be coding a bit to signal we're going to waste all the other bits. In the second case, we'd be coding a bit to redistribute all the bits we just signaled should be cocentrated in this band. */ if (j<=skip_start) { /* Give the bit we reserved to end skipping back. */ total += skip_rsv; break; } /*Figure out how many left-over bits we would be adding to this band. This can include bits we've stolen back from higher, skipped bands.*/ left = total-psum; percoeff = left/(m->eBands[codedBands]-m->eBands[start]); left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0); band_width = m->eBands[codedBands]-m->eBands[j]; band_bits = (int)(bits[j] + percoeff*band_width + rem); /*Only code a skip decision if we're above the threshold for this band. Otherwise it is force-skipped. This ensures that we have enough bits to code the skip flag.*/ if (band_bits >= IMAX(thresh[j], alloc_floor+(1< ((j>4) #endif { ec_enc_bit_logp(ec, 1, 1); break; } ec_enc_bit_logp(ec, 0, 1); } else if (ec_dec_bit_logp(ec, 1)) { break; } /*We used a bit to skip this band.*/ psum += 1< 0) intensity_rsv = LOG2_FRAC_TABLE[j-start]; psum += intensity_rsv; if (band_bits >= alloc_floor) { /*If we have enough for a fine energy bit per channel, use it.*/ psum += alloc_floor; bits[j] = alloc_floor; } else { /*Otherwise this band gets nothing at all.*/ bits[j] = 0; } } celt_assert(codedBands > start); /* Code the intensity and dual stereo parameters. */ if (intensity_rsv > 0) { if (encode) { *intensity = IMIN(*intensity, codedBands); ec_enc_uint(ec, *intensity-start, codedBands+1-start); } else *intensity = start+ec_dec_uint(ec, codedBands+1-start); } else *intensity = 0; if (*intensity <= start) { total += dual_stereo_rsv; dual_stereo_rsv = 0; } if (dual_stereo_rsv > 0) { if (encode) ec_enc_bit_logp(ec, *dual_stereo, 1); else *dual_stereo = ec_dec_bit_logp(ec, 1); } else *dual_stereo = 0; /* Allocate the remaining bits */ left = total-psum; percoeff = left/(m->eBands[codedBands]-m->eBands[start]); left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; for (j=start;jeBands[j+1]-m->eBands[j])); for (j=start;jeBands[j+1]-m->eBands[j]); bits[j] += tmp; left -= tmp; } /*for (j=0;j= 0); N0 = m->eBands[j+1]-m->eBands[j]; N=N0<1) { excess = MAX32(bit-cap[j],0); bits[j] = bit-excess; /* Compensate for the extra DoF in stereo */ den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0)); NClogN = den*(m->logN[j] + logM); /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET compared to their "fair share" of total/N */ offset = (NClogN>>1)-den*FINE_OFFSET; /* N=2 is the only point that doesn't match the curve */ if (N==2) offset += den<>2; /* Changing the offset for allocating the second and third fine energy bit */ if (bits[j] + offset < den*2<>2; else if (bits[j] + offset < den*3<>3; /* Divide with rounding */ ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))) / (den< (bits[j]>>BITRES)) ebits[j] = bits[j] >> stereo >> BITRES; /* More than that is useless because that's about as far as PVQ can go */ ebits[j] = IMIN(ebits[j], MAX_FINE_BITS); /* If we rounded down or capped this band, make it a candidate for the final fine energy pass */ fine_priority[j] = ebits[j]*(den<= bits[j]+offset; /* Remove the allocated fine bits; the rest are assigned to PVQ */ bits[j] -= C*ebits[j]< 0) { int extra_fine; int extra_bits; extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]); ebits[j] += extra_fine; extra_bits = extra_fine*C<= excess-balance; excess -= extra_bits; } balance = excess; celt_assert(bits[j] >= 0); celt_assert(ebits[j] >= 0); } /* Save any remaining bits over the cap for the rebalancing in quant_all_bands(). */ *_balance = balance; /* The skipped bands use all their bits for fine energy. */ for (;j> stereo >> BITRES; celt_assert(C*ebits[j]<nbEBands; skip_start = start; /* Reserve a bit to signal the end of manually skipped bands. */ skip_rsv = total >= 1<total) intensity_rsv = 0; else { total -= intensity_rsv; dual_stereo_rsv = total>=1<eBands[j+1]-m->eBands[j])<>4); /* Tilt of the allocation curve */ trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-1) *(1<<(LM+BITRES))>>6; /* Giving less resolution to single-coefficient bands because they get more benefit from having one coarse value per coefficient*/ if ((m->eBands[j+1]-m->eBands[j])<nbAllocVectors - 1; do { int done = 0; int psum = 0; int mid = (lo+hi) >> 1; for (j=end;j-->start;) { int bitsj; int N = m->eBands[j+1]-m->eBands[j]; bitsj = C*N*m->allocVectors[mid*len+j]<>2; if (bitsj > 0) bitsj = IMAX(0, bitsj + trim_offset[j]); bitsj += offsets[j]; if (bitsj >= thresh[j] || done) { done = 1; /* Don't allocate more than we can actually use */ psum += IMIN(bitsj, cap[j]); } else { if (bitsj >= C< total) hi = mid - 1; else lo = mid + 1; /*printf ("lo = %d, hi = %d\n", lo, hi);*/ } while (lo <= hi); hi = lo--; /*printf ("interp between %d and %d\n", lo, hi);*/ for (j=start;jeBands[j+1]-m->eBands[j]; bits1j = C*N*m->allocVectors[lo*len+j]<>2; bits2j = hi>=m->nbAllocVectors ? cap[j] : C*N*m->allocVectors[hi*len+j]<>2; if (bits1j > 0) bits1j = IMAX(0, bits1j + trim_offset[j]); if (bits2j > 0) bits2j = IMAX(0, bits2j + trim_offset[j]); if (lo > 0) bits1j += offsets[j]; bits2j += offsets[j]; if (offsets[j]>0) skip_start = j; bits2j = IMAX(0,bits2j-bits1j); bits1[j] = bits1j; bits2[j] = bits2j; } codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap, total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv, pulses, ebits, fine_priority, C, LM, ec, encode, prev); RESTORE_STACK; return codedBands; }