/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "system.h" #include "system-target.h" #include "lradc-imx233.h" #include "kernel-imx233.h" #include "stdlib.h" /* channels */ #if IMX233_SUBTARGET >= 3700 static struct channel_arbiter_t channel_arbiter; #else static struct semaphore channel_sema[LRADC_NUM_CHANNELS]; #endif /* delay channels */ static struct channel_arbiter_t delay_arbiter; /* battery is very special, dedicate a channel and a delay to it */ static int battery_chan; static int battery_delay_chan; /* irq callbacks */ static lradc_irq_fn_t irq_cb[LRADC_NUM_CHANNELS]; #define define_cb(x) \ void INT_LRADC_CH##x(void) \ { \ INT_LRADC_CH(x); \ } void INT_LRADC_CH(int chan) { if(irq_cb[chan]) irq_cb[chan](chan); imx233_lradc_clear_channel_irq(chan); } define_cb(0) define_cb(1) define_cb(2) define_cb(3) define_cb(4) define_cb(5) define_cb(6) define_cb(7) void imx233_lradc_set_channel_irq_callback(int channel, lradc_irq_fn_t cb) { irq_cb[channel] = cb; imx233_icoll_enable_interrupt(INT_SRC_LRADC_CHx(channel), cb != NULL); } void imx233_lradc_setup_channel(int channel, bool div2, bool acc, int nr_samples, int src) { HW_LRADC_CHn_CLR(channel) = BM_OR2(LRADC_CHn, NUM_SAMPLES, ACCUMULATE); HW_LRADC_CHn_SET(channel) = BF_OR2(LRADC_CHn, NUM_SAMPLES(nr_samples), ACCUMULATE(acc)); if(div2) BF_SETV(LRADC_CTRL2, DIVIDE_BY_TWO, 1 << channel); else BF_CLRV(LRADC_CTRL2, DIVIDE_BY_TWO, 1 << channel); #if IMX233_SUBTARGET >= 3700 HW_LRADC_CTRL4_CLR = BM_LRADC_CTRL4_LRADCxSELECT(channel); HW_LRADC_CTRL4_SET = src << BP_LRADC_CTRL4_LRADCxSELECT(channel); #else if(channel == 6) { BF_CLR(LRADC_CTRL2, LRADC6SELECT); BF_SETV(LRADC_CTRL2, LRADC6SELECT, src); } else if(channel == 7) { BF_CLR(LRADC_CTRL2, LRADC7SELECT); BF_SETV(LRADC_CTRL2, LRADC7SELECT, src); } else if(channel != src) panicf("cannot configure channel %d for source %d", channel, src); #endif } void imx233_lradc_setup_delay(int dchan, int trigger_lradc, int trigger_delays, int loop_count, int delay) { HW_LRADC_DELAYn(dchan) = BF_OR4(LRADC_DELAYn, TRIGGER_LRADCS(trigger_lradc), TRIGGER_DELAYS(trigger_delays), LOOP_COUNT(loop_count), DELAY(delay)); } void imx233_lradc_clear_channel_irq(int channel) { BF_CLR(LRADC_CTRL1, LRADCx_IRQ(channel)); } bool imx233_lradc_read_channel_irq(int channel) { return BF_RD(LRADC_CTRL1, LRADCx_IRQ(channel)); } void imx233_lradc_enable_channel_irq(int channel, bool enable) { if(enable) BF_SET(LRADC_CTRL1, LRADCx_IRQ_EN(channel)); else BF_CLR(LRADC_CTRL1, LRADCx_IRQ_EN(channel)); imx233_lradc_clear_channel_irq(channel); } void imx233_lradc_kick_channel(int channel) { imx233_lradc_clear_channel_irq(channel); BF_SETV(LRADC_CTRL0, SCHEDULE, 1 << channel); } void imx233_lradc_kick_delay(int dchan) { BF_SETn(LRADC_DELAYn, dchan, KICK); } void imx233_lradc_wait_channel(int channel) { /* wait for completion */ while(!imx233_lradc_read_channel_irq(channel)) yield(); } int imx233_lradc_read_channel(int channel) { return BF_RDn(LRADC_CHn, channel, VALUE); } void imx233_lradc_clear_channel(int channel) { BF_CLRn(LRADC_CHn, channel, VALUE); } #if IMX233_SUBTARGET >= 3700 int imx233_lradc_acquire_channel(int src, int timeout) { (void) src; return arbiter_acquire(&channel_arbiter, timeout); } void imx233_lradc_release_channel(int chan) { return arbiter_release(&channel_arbiter, chan); } void imx233_lradc_reserve_channel(int channel) { return arbiter_reserve(&channel_arbiter, channel); } #else int imx233_lradc_acquire_channel(int src, int timeout) { int channel = src <= LRADC_SRC_BATTERY ? src : 6; if(semaphore_wait(&channel_sema[channel], timeout) == OBJ_WAIT_TIMEDOUT) return -1; return channel; } void imx233_lradc_release_channel(int chan) { semaphore_release(&channel_sema[chan]); } void imx233_lradc_reserve_channel(int channel) { if(imx233_lradc_acquire_channel(channel, 0) == -1) panicf("Cannot reserve a used channel"); } #endif int imx233_lradc_acquire_delay(int timeout) { return arbiter_acquire(&delay_arbiter, timeout); } void imx233_lradc_release_delay(int chan) { return arbiter_release(&delay_arbiter, chan); } void imx233_lradc_reserve_delay(int channel) { return arbiter_reserve(&delay_arbiter, channel); } #if IMX233_SUBTARGET >= 3700 int imx233_lradc_sense_die_temperature(int nmos_chan, int pmos_chan) { imx233_lradc_setup_channel(nmos_chan, false, false, 0, LRADC_SRC_NMOS_THIN); imx233_lradc_setup_channel(pmos_chan, false, false, 0, LRADC_SRC_PMOS_THIN); // mux sensors BF_CLR(LRADC_CTRL2, TEMPSENSE_PWD); imx233_lradc_clear_channel(nmos_chan); imx233_lradc_clear_channel(pmos_chan); // schedule both channels imx233_lradc_kick_channel(nmos_chan); imx233_lradc_kick_channel(pmos_chan); // wait completion imx233_lradc_wait_channel(nmos_chan); imx233_lradc_wait_channel(pmos_chan); // mux sensors BF_SET(LRADC_CTRL2, TEMPSENSE_PWD); // do the computation int diff = imx233_lradc_read_channel(nmos_chan) - imx233_lradc_read_channel(pmos_chan); // return diff * 1.012 / 4 return (diff * 1012) / 4000; } #endif /* set to 0 to disable current source */ static void imx233_lradc_set_temp_isrc(int sensor, int value) { if(sensor < 0 || sensor > 1) panicf("imx233_lradc_set_temp_isrc: invalid sensor"); unsigned mask = sensor ? BM_LRADC_CTRL2_TEMP_ISRC0 : BM_LRADC_CTRL2_TEMP_ISRC1; unsigned bp = sensor ? BP_LRADC_CTRL2_TEMP_ISRC0 : BP_LRADC_CTRL2_TEMP_ISRC1; unsigned en = sensor ? BM_LRADC_CTRL2_TEMP_SENSOR_IENABLE0 : BM_LRADC_CTRL2_TEMP_SENSOR_IENABLE1; HW_LRADC_CTRL2_CLR = mask; HW_LRADC_CTRL2_SET = value << bp; if(value != 0) { HW_LRADC_CTRL2_SET = en; udelay(100); } else HW_LRADC_CTRL2_CLR = en; } int imx233_lradc_sense_ext_temperature(int chan, int sensor) { #define EXT_TEMP_ACC_COUNT 5 /* setup channel */ imx233_lradc_setup_channel(chan, false, false, 0, sensor); /* set current source to 300µA */ imx233_lradc_set_temp_isrc(sensor, BV_LRADC_CTRL2_TEMP_ISRC0__300); /* read value and accumulate */ int a = 0; for(int i = 0; i < EXT_TEMP_ACC_COUNT; i++) { imx233_lradc_clear_channel(chan); imx233_lradc_kick_channel(chan); imx233_lradc_wait_channel(chan); a += imx233_lradc_read_channel(chan); } /* setup channel for small accumulation */ /* set current source to 20µA */ imx233_lradc_set_temp_isrc(sensor, BV_LRADC_CTRL2_TEMP_ISRC0__20); /* read value */ int b = 0; for(int i = 0; i < EXT_TEMP_ACC_COUNT; i++) { imx233_lradc_clear_channel(chan); imx233_lradc_kick_channel(chan); imx233_lradc_wait_channel(chan); b += imx233_lradc_read_channel(chan); } /* disable sensor current */ imx233_lradc_set_temp_isrc(sensor, BV_LRADC_CTRL2_TEMP_ISRC0__ZERO); return (abs(b - a) / EXT_TEMP_ACC_COUNT) * 1104 / 1000; } void imx233_lradc_setup_battery_conversion(bool automatic, unsigned long scale_factor) { BF_CLR(LRADC_CONVERSION, SCALE_FACTOR); BF_SETV(LRADC_CONVERSION, SCALE_FACTOR, scale_factor); if(automatic) BF_SET(LRADC_CONVERSION, AUTOMATIC); else BF_CLR(LRADC_CONVERSION, AUTOMATIC); } int imx233_lradc_read_battery_voltage(void) { return BF_RD(LRADC_CONVERSION, SCALED_BATT_VOLTAGE); } void imx233_lradc_setup_touch(bool xminus_enable, bool yminus_enable, bool xplus_enable, bool yplus_enable, bool touch_detect) { HW_LRADC_CTRL0_CLR = BM_OR5(LRADC_CTRL0, XMINUS_ENABLE, YMINUS_ENABLE, XPLUS_ENABLE, YPLUS_ENABLE, TOUCH_DETECT_ENABLE); HW_LRADC_CTRL0_SET = BF_OR5(LRADC_CTRL0, XMINUS_ENABLE(xminus_enable), YMINUS_ENABLE(yminus_enable), XPLUS_ENABLE(xplus_enable), YPLUS_ENABLE(yplus_enable), TOUCH_DETECT_ENABLE(touch_detect)); } void imx233_lradc_enable_touch_detect_irq(bool enable) { if(enable) BF_SET(LRADC_CTRL1, TOUCH_DETECT_IRQ_EN); else BF_CLR(LRADC_CTRL1, TOUCH_DETECT_IRQ_EN); imx233_lradc_clear_touch_detect_irq(); } void imx233_lradc_clear_touch_detect_irq(void) { BF_CLR(LRADC_CTRL1, TOUCH_DETECT_IRQ); } bool imx233_lradc_read_touch_detect(void) { return BF_RD(LRADC_STATUS, TOUCH_DETECT_RAW); } void imx233_lradc_init(void) { /* On STMP3700+, any channel can measure any source but on STMP3600 only * channels 6 and 7 can measure all sources. Channel 7 being dedicated to * battery, only channel 6 is available for free use */ #if IMX233_SUBTARGET >= 3700 arbiter_init(&channel_arbiter, LRADC_NUM_CHANNELS); #else for(int i = 0; i < LRADC_NUM_CHANNELS; i++) semaphore_init(&channel_sema[i], 1, 1); #endif arbiter_init(&delay_arbiter, LRADC_NUM_DELAYS); // enable block imx233_reset_block(&HW_LRADC_CTRL0); // disable ground ref BF_CLR(LRADC_CTRL0, ONCHIP_GROUNDREF); // disable temperature sensors BF_CLR(LRADC_CTRL2, TEMP_SENSOR_IENABLE0); BF_CLR(LRADC_CTRL2, TEMP_SENSOR_IENABLE1); #if IMX233_SUBTARGET >= 3700 BF_SET(LRADC_CTRL2, TEMPSENSE_PWD); #endif // set frequency BF_CLR(LRADC_CTRL3, CYCLE_TIME); BF_SETV(LRADC_CTRL3, CYCLE_TIME_V, 6MHZ); // setup battery battery_chan = 7; imx233_lradc_reserve_channel(battery_chan); /* setup them for the simplest use: no accumulation, no division*/ imx233_lradc_setup_channel(battery_chan, false, false, 0, LRADC_SRC_BATTERY); /* setup delay channel for battery for automatic reading and scaling */ battery_delay_chan = 0; imx233_lradc_reserve_delay(battery_delay_chan); /* setup delay to trigger battery channel and retrigger itself. * The counter runs at 2KHz so a delay of 200 will trigger 10 * conversions per seconds */ imx233_lradc_setup_delay(battery_delay_chan, 1 << battery_chan, 1 << battery_delay_chan, 0, 200); imx233_lradc_kick_delay(battery_delay_chan); /* enable automatic conversion, use Li-Ion type battery */ imx233_lradc_setup_battery_conversion(true, BV_LRADC_CONVERSION_SCALE_FACTOR__LI_ION); }