/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Akio Idehara, Andrew Mahone * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* * Implementation of area average and linear row and vertical scalers, and * nearest-neighbor grey scaler (C) 2008 Andrew Mahone * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include #include #include "general.h" #include "kernel.h" #include "system.h" #ifndef PLUGIN #include "debug.h" #endif #include "lcd.h" #include "file.h" #ifdef HAVE_REMOTE_LCD #include "lcd-remote.h" #endif #ifdef ROCKBOX_DEBUG_SCALERS #define SDEBUGF DEBUGF #else #define SDEBUGF(...) #endif #ifndef __PCTOOL__ #include "config.h" #include "system.h" #include #include "resize.h" #else #undef DEBUGF #define DEBUGF(...) #endif #include #if CONFIG_CPU == SH7034 /* 16*16->32 bit multiplication is a single instrcution on the SH1 */ #define MULUQ(a, b) ((uint32_t) (((uint16_t) (a)) * ((uint16_t) (b)))) #define MULQ(a, b) ((int32_t) (((int16_t) (a)) * ((int16_t) (b)))) #else #define MULUQ(a, b) ((a) * (b)) #define MULQ(a, b) ((a) * (b)) #endif #ifdef HAVE_LCD_COLOR #define CHANNEL_BYTES (sizeof(struct uint32_argb)/sizeof(uint32_t)) #else #define CHANNEL_BYTES (sizeof(uint32_t)/sizeof(uint32_t)) /* packed */ #endif /* calculate the maximum dimensions which will preserve the aspect ration of src while fitting in the constraints passed in dst, and store result in dst, returning 0 if rounding and 1 if not rounding. */ int recalc_dimension(struct dim *dst, struct dim *src) { /* This only looks backwards. The input image size is being pre-scaled by * the inverse of the pixel aspect ratio, so that once the size it scaled * to meet the output constraints, the scaled image will have appropriate * proportions. */ int sw = src->width * LCD_PIXEL_ASPECT_HEIGHT; int sh = src->height * LCD_PIXEL_ASPECT_WIDTH; int tmp; if (dst->width <= 0) dst->width = LCD_WIDTH; if (dst->height <= 0) dst->height = LCD_HEIGHT; #ifndef HAVE_UPSCALER if (dst->width > sw || dst->height > sh) { dst->width = sw; dst->height = sh; } if (sw == dst->width && sh == dst->height) return 1; #endif tmp = (sw * dst->height + (sh >> 1)) / sh; if (tmp > dst->width) dst->height = (sh * dst->width + (sw >> 1)) / sw; else dst->width = tmp; return src->width == dst->width && src->height == dst->height; } /* All of these scalers use variations of Bresenham's algorithm to convert from their input to output coordinates. The error value is shifted from the "classic" version such that it is a useful input to the scaling calculation. */ #ifdef HAVE_LCD_COLOR /* dither + pack on channel of RGB565, R an B share a packing macro */ #define PACKRB(v, delta) ((31 * v + (v >> 3) + delta) >> 8) #define PACKG(g, delta) ((63 * g + (g >> 2) + delta) >> 8) #endif /* read new img_part unconditionally, return false on failure */ #define FILL_BUF_INIT(img_part, store_part, args) { \ img_part = store_part(args); \ if (img_part == NULL) \ return false; \ } /* read new img_part if current one is empty, return false on failure */ #define FILL_BUF(img_part, store_part, args) { \ if (img_part->len == 0) \ img_part = store_part(args); \ if (img_part == NULL) \ return false; \ } #if defined(CPU_COLDFIRE) #define MAC(op1, op2, num) \ asm volatile( \ "mac.l %0, %1, %%acc" #num \ : \ : "%d" (op1), "d" (op2)\ ) #define MAC_OUT(dest, num) \ asm volatile( \ "movclr.l %%acc" #num ", %0" \ : "=d" (dest) \ ) #elif defined(CPU_SH) /* calculate the 32-bit product of unsigned 16-bit op1 and op2 */ static inline int32_t mul_s16_s16(int16_t op1, int16_t op2) { return (int32_t)(op1 * op2); } /* calculate the 32-bit product of signed 16-bit op1 and op2 */ static inline uint32_t mul_u16_u16(uint16_t op1, uint16_t op2) { return (uint32_t)(op1 * op2); } #endif /* horizontal area average scaler */ static bool scale_h_area(void *out_line_ptr, struct scaler_context *ctx, bool accum) { SDEBUGF("scale_h_area\n"); unsigned int ix, ox, oxe, mul; #if defined(CPU_SH) || defined (TEST_SH_MATH) const uint32_t h_i_val = ctx->src->width, h_o_val = ctx->bm->width; #else const uint32_t h_i_val = ctx->h_i_val, h_o_val = ctx->h_o_val; #endif #ifdef HAVE_LCD_COLOR struct uint32_argb rgbvalacc = { 0, 0, 0, 0 }, rgbvaltmp = { 0, 0, 0, 0 }, *out_line = (struct uint32_argb *)out_line_ptr; #else uint32_t acc = 0, tmp = 0, *out_line = (uint32_t*)out_line_ptr; #endif struct img_part *part; FILL_BUF_INIT(part,ctx->store_part,ctx->args); ox = 0; oxe = 0; mul = 0; /* give other tasks a chance to run */ yield(); for (ix = 0; ix < (unsigned int)ctx->src->width; ix++) { oxe += h_o_val; /* end of current area has been reached */ /* fill buffer if needed */ FILL_BUF(part,ctx->store_part,ctx->args); #ifdef HAVE_LCD_COLOR if (oxe >= h_i_val) { /* "reset" error, which now represents partial coverage of next pixel by the next area */ oxe -= h_i_val; #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ /* add saved partial pixel from start of area */ MAC(rgbvalacc.r, h_o_val, 0); MAC(rgbvalacc.g, h_o_val, 1); MAC(rgbvalacc.b, h_o_val, 2); MAC(rgbvalacc.a, h_o_val, 3); MAC(rgbvaltmp.r, mul, 0); MAC(rgbvaltmp.g, mul, 1); MAC(rgbvaltmp.b, mul, 2); MAC(rgbvaltmp.a, mul, 3); /* get new pixel , then add its partial coverage to this area */ mul = h_o_val - oxe; rgbvaltmp.r = part->buf->red; rgbvaltmp.g = part->buf->green; rgbvaltmp.b = part->buf->blue; rgbvaltmp.a = part->buf->alpha; MAC(rgbvaltmp.r, mul, 0); MAC(rgbvaltmp.g, mul, 1); MAC(rgbvaltmp.b, mul, 2); MAC(rgbvaltmp.a, mul, 3); MAC_OUT(rgbvalacc.r, 0); MAC_OUT(rgbvalacc.g, 1); MAC_OUT(rgbvalacc.b, 2); MAC_OUT(rgbvalacc.a, 3); #else /* generic C math */ /* add saved partial pixel from start of area */ rgbvalacc.r = rgbvalacc.r * h_o_val + rgbvaltmp.r * mul; rgbvalacc.g = rgbvalacc.g * h_o_val + rgbvaltmp.g * mul; rgbvalacc.b = rgbvalacc.b * h_o_val + rgbvaltmp.b * mul; rgbvalacc.a = rgbvalacc.a * h_o_val + rgbvaltmp.a * mul; /* get new pixel , then add its partial coverage to this area */ rgbvaltmp.r = part->buf->red; rgbvaltmp.g = part->buf->green; rgbvaltmp.b = part->buf->blue; rgbvaltmp.a = part->buf->alpha; mul = h_o_val - oxe; rgbvalacc.r += rgbvaltmp.r * mul; rgbvalacc.g += rgbvaltmp.g * mul; rgbvalacc.b += rgbvaltmp.b * mul; rgbvalacc.a += rgbvaltmp.a * mul; #endif /* CPU */ rgbvalacc.r = (rgbvalacc.r + (1 << 21)) >> 22; rgbvalacc.g = (rgbvalacc.g + (1 << 21)) >> 22; rgbvalacc.b = (rgbvalacc.b + (1 << 21)) >> 22; rgbvalacc.a = (rgbvalacc.a + (1 << 21)) >> 22; /* store or accumulate to output row */ if (accum) { rgbvalacc.r += out_line[ox].r; rgbvalacc.g += out_line[ox].g; rgbvalacc.b += out_line[ox].b; rgbvalacc.a += out_line[ox].a; } out_line[ox].r = rgbvalacc.r; out_line[ox].g = rgbvalacc.g; out_line[ox].b = rgbvalacc.b; out_line[ox].a = rgbvalacc.a; /* reset accumulator */ rgbvalacc.r = 0; rgbvalacc.g = 0; rgbvalacc.b = 0; rgbvalacc.a = 0; mul = oxe; ox += 1; /* inside an area */ } else { /* add pixel value to accumulator */ rgbvalacc.r += part->buf->red; rgbvalacc.g += part->buf->green; rgbvalacc.b += part->buf->blue; rgbvalacc.a += part->buf->alpha; } #else if (oxe >= h_i_val) { /* "reset" error, which now represents partial coverage of next pixel by the next area */ oxe -= h_i_val; #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ /* add saved partial pixel from start of area */ MAC(acc, h_o_val, 0); MAC(tmp, mul, 0); /* get new pixel , then add its partial coverage to this area */ tmp = *(part->buf); mul = h_o_val - oxe; MAC(tmp, mul, 0); MAC_OUT(acc, 0); #elif defined(CPU_SH) /* SH-1 16x16->32 math */ /* add saved partial pixel from start of area */ acc = mul_u16_u16(acc, h_o_val) + mul_u16_u16(tmp, mul); /* get new pixel , then add its partial coverage to this area */ tmp = *(part->buf); mul = h_o_val - oxe; acc += mul_u16_u16(tmp, mul); #else /* generic C math */ /* add saved partial pixel from start of area */ acc = (acc * h_o_val) + (tmp * mul); /* get new pixel , then add its partial coverage to this area */ tmp = *(part->buf); mul = h_o_val - oxe; acc += tmp * mul; #endif /* CPU */ #if !(defined(CPU_SH) || defined(TEST_SH_MATH)) /* round, divide, and either store or accumulate to output row */ acc = (acc + (1 << 21)) >> 22; #endif if (accum) { acc += out_line[ox]; } out_line[ox] = acc; /* reset accumulator */ acc = 0; mul = oxe; ox += 1; /* inside an area */ } else { /* add pixel value to accumulator */ acc += *(part->buf); } #endif part->buf++; part->len--; } return true; } /* vertical area average scaler */ static inline bool scale_v_area(struct rowset *rset, struct scaler_context *ctx) { uint32_t mul, oy, iy, oye; #if defined(CPU_SH) || defined (TEST_SH_MATH) const uint32_t v_i_val = ctx->src->height, v_o_val = ctx->bm->height; #else const uint32_t v_i_val = ctx->v_i_val, v_o_val = ctx->v_o_val; #endif /* Set up rounding and scale factors */ mul = 0; oy = rset->rowstart; oye = 0; uint32_t *rowacc = (uint32_t *) ctx->buf, *rowtmp = rowacc + ctx->bm->width * CHANNEL_BYTES, *rowacc_px, *rowtmp_px; memset((void *)ctx->buf, 0, ctx->bm->width * 2 * sizeof(uint32_t)*CHANNEL_BYTES); SDEBUGF("scale_v_area\n"); /* zero the accumulator and temp rows */ for (iy = 0; iy < (unsigned int)ctx->src->height; iy++) { oye += v_o_val; /* end of current area has been reached */ if (oye >= v_i_val) { /* "reset" error, which now represents partial coverage of the next row by the next area */ oye -= v_i_val; /* add stored partial row to accumulator */ for(rowacc_px = rowacc, rowtmp_px = rowtmp; rowacc_px != rowtmp; rowacc_px++, rowtmp_px++) *rowacc_px = *rowacc_px * v_o_val + *rowtmp_px * mul; /* store new scaled row in temp row */ if(!ctx->h_scaler(rowtmp, ctx, false)) return false; /* add partial coverage by new row to this area, then round and scale to final value */ mul = v_o_val - oye; for(rowacc_px = rowacc, rowtmp_px = rowtmp; rowacc_px != rowtmp; rowacc_px++, rowtmp_px++) *rowacc_px += mul * *rowtmp_px; ctx->output_row(oy, (void*)rowacc, ctx); /* clear accumulator row, store partial coverage for next row */ memset((void *)rowacc, 0, ctx->bm->width * sizeof(uint32_t) * CHANNEL_BYTES); mul = oye; oy += rset->rowstep; /* inside an area */ } else { /* accumulate new scaled row to rowacc */ if (!ctx->h_scaler(rowacc, ctx, true)) return false; } } return true; } #ifdef HAVE_UPSCALER /* horizontal linear scaler */ static bool scale_h_linear(void *out_line_ptr, struct scaler_context *ctx, bool accum) { unsigned int ix, ox, ixe; #if defined(CPU_SH) || defined (TEST_SH_MATH) const uint32_t h_i_val = ctx->src->width - 1, h_o_val = ctx->bm->width - 1; #else const uint32_t h_i_val = ctx->h_i_val, h_o_val = ctx->h_o_val; #endif /* type x = x is an ugly hack for hiding an unitialized data warning. The values are conditionally initialized before use, but other values are set such that this will occur before these are used. */ #ifdef HAVE_LCD_COLOR struct uint32_argb rgbval=rgbval, rgbinc=rgbinc, *out_line = (struct uint32_argb*)out_line_ptr; #else uint32_t val=val, inc=inc, *out_line = (uint32_t*)out_line_ptr; #endif struct img_part *part; SDEBUGF("scale_h_linear\n"); FILL_BUF_INIT(part,ctx->store_part,ctx->args); ix = 0; /* The error is set so that values are initialized on the first pass. */ ixe = h_o_val; /* give other tasks a chance to run */ yield(); for (ox = 0; ox < (uint32_t)ctx->bm->width; ox++) { #ifdef HAVE_LCD_COLOR if (ixe >= h_o_val) { /* Store the new "current" pixel value in rgbval, and the color step value in rgbinc. */ ixe -= h_o_val; rgbinc.r = -(part->buf->red); rgbinc.g = -(part->buf->green); rgbinc.b = -(part->buf->blue); rgbinc.a = -(part->buf->alpha); #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ MAC(part->buf->red, h_o_val, 0); MAC(part->buf->green, h_o_val, 1); MAC(part->buf->blue, h_o_val, 2); MAC(part->buf->alpha, h_o_val, 3); #else /* generic C math */ rgbval.r = (part->buf->red) * h_o_val; rgbval.g = (part->buf->green) * h_o_val; rgbval.b = (part->buf->blue) * h_o_val; rgbval.a = (part->buf->alpha) * h_o_val; #endif /* CPU */ ix += 1; /* If this wasn't the last pixel, add the next one to rgbinc. */ if (LIKELY(ix < (uint32_t)ctx->src->width)) { part->buf++; part->len--; /* Fetch new pixels if needed */ FILL_BUF(part,ctx->store_part,ctx->args); rgbinc.r += part->buf->red; rgbinc.g += part->buf->green; rgbinc.b += part->buf->blue; rgbinc.a += part->buf->alpha; /* Add a partial step to rgbval, in this pixel isn't precisely aligned with the new source pixel */ #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ MAC(rgbinc.r, ixe, 0); MAC(rgbinc.g, ixe, 1); MAC(rgbinc.b, ixe, 2); MAC(rgbinc.a, ixe, 3); #else /* generic C math */ rgbval.r += rgbinc.r * ixe; rgbval.g += rgbinc.g * ixe; rgbval.b += rgbinc.b * ixe; rgbval.a += rgbinc.a * ixe; #endif } #if defined(CPU_COLDFIRE) /* get final EMAC result out of ACC registers */ MAC_OUT(rgbval.r, 0); MAC_OUT(rgbval.g, 1); MAC_OUT(rgbval.b, 2); MAC_OUT(rgbval.a, 3); #endif /* Now multiply the color increment to its proper value */ rgbinc.r *= h_i_val; rgbinc.g *= h_i_val; rgbinc.b *= h_i_val; rgbinc.a *= h_i_val; } else { rgbval.r += rgbinc.r; rgbval.g += rgbinc.g; rgbval.b += rgbinc.b; rgbval.a += rgbinc.a; } /* round and scale values, and accumulate or store to output */ if (accum) { out_line[ox].r += (rgbval.r + (1 << 21)) >> 22; out_line[ox].g += (rgbval.g + (1 << 21)) >> 22; out_line[ox].b += (rgbval.b + (1 << 21)) >> 22; out_line[ox].a += (rgbval.a + (1 << 21)) >> 22; } else { out_line[ox].r = (rgbval.r + (1 << 21)) >> 22; out_line[ox].g = (rgbval.g + (1 << 21)) >> 22; out_line[ox].b = (rgbval.b + (1 << 21)) >> 22; out_line[ox].a = (rgbval.a + (1 << 21)) >> 22; } #else if (ixe >= h_o_val) { /* Store the new "current" pixel value in rgbval, and the color step value in rgbinc. */ ixe -= h_o_val; val = *(part->buf); inc = -val; #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ MAC(val, h_o_val, 0); #elif defined(CPU_SH) /* SH-1 16x16->32 math */ val = mul_u16_u16(val, h_o_val); #else /* generic C math */ val = val * h_o_val; #endif ix += 1; /* If this wasn't the last pixel, add the next one to rgbinc. */ if (LIKELY(ix < (uint32_t)ctx->src->width)) { part->buf++; part->len--; /* Fetch new pixels if needed */ FILL_BUF(part,ctx->store_part,ctx->args); inc += *(part->buf); /* Add a partial step to rgbval, in this pixel isn't precisely aligned with the new source pixel */ #if defined(CPU_COLDFIRE) /* Coldfire EMAC math */ MAC(inc, ixe, 0); #elif defined(CPU_SH) /* SH-1 16x16->32 math */ val += mul_s16_s16(inc, ixe); #else /* generic C math */ val += inc * ixe; #endif } #if defined(CPU_COLDFIRE) /* get final EMAC result out of ACC register */ MAC_OUT(val, 0); #endif /* Now multiply the color increment to its proper value */ #if defined(CPU_SH) /* SH-1 16x16->32 math */ inc = mul_s16_s16(inc, h_i_val); #else /* generic C math */ inc *= h_i_val; #endif } else val += inc; #if !(defined(CPU_SH) || defined(TEST_SH_MATH)) /* round and scale values, and accumulate or store to output */ if (accum) { out_line[ox] += (val + (1 << 21)) >> 22; } else { out_line[ox] = (val + (1 << 21)) >> 22; } #else /* round and scale values, and accumulate or store to output */ if (accum) { out_line[ox] += val; } else { out_line[ox] = val; } #endif #endif ixe += h_i_val; } return true; } /* vertical linear scaler */ static inline bool scale_v_linear(struct rowset *rset, struct scaler_context *ctx) { uint32_t iy, iye; int32_t oy; #if defined(CPU_SH) || defined (TEST_SH_MATH) const uint32_t v_i_val = ctx->src->height - 1, v_o_val = ctx->bm->height - 1; #else const uint32_t v_i_val = ctx->v_i_val, v_o_val = ctx->v_o_val; #endif /* Set up our buffers, to store the increment and current value for each column, and one temp buffer used to read in new rows. */ uint32_t *rowinc = (uint32_t *)(ctx->buf), *rowval = rowinc + ctx->bm->width * CHANNEL_BYTES, *rowtmp = rowval + ctx->bm->width * CHANNEL_BYTES, *rowinc_px, *rowval_px, *rowtmp_px; SDEBUGF("scale_v_linear\n"); iy = 0; iye = v_o_val; /* get first scaled row in rowtmp */ if(!ctx->h_scaler((void*)rowtmp, ctx, false)) return false; for (oy = rset->rowstart; oy != rset->rowstop; oy += rset->rowstep) { if (iye >= v_o_val) { iye -= v_o_val; iy += 1; for(rowinc_px = rowinc, rowtmp_px = rowtmp, rowval_px = rowval; rowinc_px < rowval; rowinc_px++, rowtmp_px++, rowval_px++) { *rowinc_px = -*rowtmp_px; *rowval_px = *rowtmp_px * v_o_val; } if (iy < (uint32_t)ctx->src->height) { if (!ctx->h_scaler((void*)rowtmp, ctx, false)) return false; for(rowinc_px = rowinc, rowtmp_px = rowtmp, rowval_px = rowval; rowinc_px < rowval; rowinc_px++, rowtmp_px++, rowval_px++) { *rowinc_px += *rowtmp_px; *rowval_px += *rowinc_px * iye; *rowinc_px *= v_i_val; } } } else for(rowinc_px = rowinc, rowval_px = rowval; rowinc_px < rowval; rowinc_px++, rowval_px++) *rowval_px += *rowinc_px; ctx->output_row(oy, (void*)rowval, ctx); iye += v_i_val; } return true; } #endif /* HAVE_UPSCALER */ #if defined(HAVE_LCD_COLOR) && (defined(HAVE_JPEG) || defined(PLUGIN)) static void output_row_32_native_fromyuv(uint32_t row, void * row_in, struct scaler_context *ctx) { #if defined(LCD_STRIDEFORMAT) && LCD_STRIDEFORMAT == VERTICAL_STRIDE #define DEST_STEP (ctx->bm->height) #define Y_STEP (1) #else #define DEST_STEP (1) #define Y_STEP (BM_WIDTH(ctx->bm->width,FORMAT_NATIVE,0)) #endif int col; uint8_t dy = DITHERY(row); struct uint32_argb *qp = (struct uint32_argb *)row_in; SDEBUGF("output_row: y: %lu in: %p\n",row, row_in); fb_data *dest = (fb_data *)ctx->bm->data + Y_STEP * row; int delta = 127; unsigned r, g, b, y, u, v; for (col = 0; col < ctx->bm->width; col++) { (void) delta; if (ctx->dither) delta = DITHERXDY(col,dy); y = SC_OUT(qp->b, ctx); u = SC_OUT(qp->g, ctx); v = SC_OUT(qp->r, ctx); qp++; yuv_to_rgb(y, u, v, &r, &g, &b); #if LCD_DEPTH < 24 r = (31 * r + (r >> 3) + delta) >> 8; g = (63 * g + (g >> 2) + delta) >> 8; b = (31 * b + (b >> 3) + delta) >> 8; #endif *dest = FB_RGBPACK_LCD(r, g, b); dest += DEST_STEP; } } #endif #if !defined(PLUGIN) || LCD_DEPTH > 1 static void output_row_32_native(uint32_t row, void * row_in, struct scaler_context *ctx) { int col; int fb_width = BM_WIDTH(ctx->bm->width,FORMAT_NATIVE,0); uint8_t dy = DITHERY(row); #ifdef HAVE_LCD_COLOR struct uint32_argb *qp = (struct uint32_argb*)row_in; #else uint32_t *qp = (uint32_t*)row_in; #endif SDEBUGF("output_row: y: %lu in: %p\n",row, row_in); #if LCD_DEPTH == 2 #if LCD_PIXELFORMAT == HORIZONTAL_PACKING /* greyscale iPods */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * row; int shift = 6; int delta = 127; unsigned bright; unsigned data = 0; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_OUT(*qp++, ctx); bright = (3 * bright + (bright >> 6) + delta) >> 8; data |= (~bright & 3) << shift; shift -= 2; if (shift < 0) { *dest++ = data; data = 0; shift = 6; } } if (shift < 6) *dest++ = data; #elif LCD_PIXELFORMAT == VERTICAL_PACKING /* iriver H1x0 */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * (row >> 2); int shift = 2 * (row & 3); int delta = 127; unsigned bright; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_OUT(*qp++, ctx); bright = (3 * bright + (bright >> 6) + delta) >> 8; *dest++ |= (~bright & 3) << shift; } #elif LCD_PIXELFORMAT == VERTICAL_INTERLEAVED /* iAudio M3 */ fb_data *dest = (fb_data *)ctx->bm->data + fb_width * (row >> 3); int shift = row & 7; int delta = 127; unsigned bright; for (col = 0; col < ctx->bm->width; col++) { if (ctx->dither) delta = DITHERXDY(col,dy); bright = SC_OUT(*qp++, ctx); bright = (3 * bright + (bright >> 6) + delta) >> 8; *dest++ |= vi_pattern[bright] << shift; } #endif /* LCD_PIXELFORMAT */ #elif LCD_DEPTH >= 16 /* iriver h300, colour iPods, X5 */ (void)fb_width; fb_data *dest = STRIDE_MAIN((fb_data *)ctx->bm->data + fb_width * row, (fb_data *)ctx->bm->data + row); int delta = 127; unsigned r, g, b; struct uint32_argb q0; /* setup alpha channel buffer */ unsigned char *bm_alpha = NULL; if (ctx->bm->alpha_offset > 0) bm_alpha = ctx->bm->data + ctx->bm->alpha_offset; if (bm_alpha) bm_alpha += ALIGN_UP(ctx->bm->width, 2)*row/2; for (col = 0; col < ctx->bm->width; col++) { (void) delta; if (ctx->dither) delta = DITHERXDY(col,dy); q0 = *qp++; r = SC_OUT(q0.r, ctx); g = SC_OUT(q0.g, ctx); b = SC_OUT(q0.b, ctx); #if LCD_DEPTH < 24 r = (31 * r + (r >> 3) + delta) >> 8; g = (63 * g + (g >> 2) + delta) >> 8; b = (31 * b + (b >> 3) + delta) >> 8; #endif *dest = FB_RGBPACK_LCD(r, g, b); dest += STRIDE_MAIN(1, ctx->bm->height); if (bm_alpha) { /* pack alpha channel for 2 pixels into 1 byte */ unsigned alpha = SC_OUT(q0.a, ctx); if (col%2) *bm_alpha++ |= alpha&0xf0; else *bm_alpha = alpha>>4; } } #endif /* LCD_DEPTH */ } #endif #if defined(PLUGIN) && LCD_DEPTH > 1 unsigned int get_size_native(struct bitmap *bm) { return BM_SIZE(bm->width,bm->height,FORMAT_NATIVE,0); } const struct custom_format format_native = { .output_row_8 = output_row_8_native, #if defined(HAVE_LCD_COLOR) && (defined(HAVE_JPEG) || defined(PLUGIN)) .output_row_32 = { output_row_32_native, output_row_32_native_fromyuv }, #else .output_row_32 = output_row_32_native, #endif .get_size = get_size_native }; #endif int resize_on_load(struct bitmap *bm, bool dither, struct dim *src, struct rowset *rset, unsigned char *buf, unsigned int len, const struct custom_format *format, IF_PIX_FMT(int format_index,) struct img_part* (*store_part)(void *args), void *args) { const int sw = src->width; const int sh = src->height; const int dw = bm->width; const int dh = bm->height; int ret; /* buffer for 1 line + 2 spare lines */ #ifdef HAVE_LCD_COLOR unsigned int needed = sizeof(struct uint32_argb) * 3 * bm->width; #else unsigned int needed = sizeof(uint32_t) * 3 * bm->width; #endif #if MAX_SC_STACK_ALLOC uint8_t sc_buf[(needed <= len || needed > MAX_SC_STACK_ALLOC) ? 0 : needed]; #endif ALIGN_BUFFER(buf, len, sizeof(uint32_t)); if (needed > len) { #if MAX_SC_STACK_ALLOC if (needed > MAX_SC_STACK_ALLOC) { DEBUGF("unable to allocate required buffer: %d needed, " "%d available, %d permitted from stack\n", needed, len, MAX_SC_STACK_ALLOC); return 0; } if (sizeof(sc_buf) < needed) { DEBUGF("failed to allocate large enough buffer on stack: " "%d needed, only got %d", needed, MAX_SC_STACK_ALLOC); return 0; } #else DEBUGF("unable to allocate required buffer: %d needed, " "%d available\n", needed, len); return 0; #endif } struct scaler_context ctx; #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(true); #endif ctx.store_part = store_part; ctx.args = args; #if MAX_SC_STACK_ALLOC ctx.buf = needed > len ? sc_buf : buf; #else ctx.buf = buf; #endif ctx.len = len; ctx.bm = bm; ctx.src = src; ctx.dither = dither; #if defined(CPU_SH) || defined (TEST_SH_MATH) uint32_t div; #endif #if !defined(PLUGIN) #if defined(HAVE_LCD_COLOR) && defined(HAVE_JPEG) ctx.output_row = format_index ? output_row_32_native_fromyuv : output_row_32_native; #else ctx.output_row = output_row_32_native; #endif if (format) #endif #ifdef HAVE_LCD_COLOR ctx.output_row = format->output_row_32[format_index]; #else ctx.output_row = format->output_row_32; #endif #ifdef HAVE_UPSCALER if (sw > dw) { #endif ctx.h_scaler = scale_h_area; #if defined(CPU_SH) || defined (TEST_SH_MATH) div = sw; #else uint32_t h_div = (1U << 24) / sw; ctx.h_i_val = sw * h_div; ctx.h_o_val = dw * h_div; #endif #ifdef HAVE_UPSCALER } else { ctx.h_scaler = scale_h_linear; #if defined(CPU_SH) || defined (TEST_SH_MATH) div = dw - 1; #else uint32_t h_div = (1U << 24) / (dw - 1); ctx.h_i_val = (sw - 1) * h_div; ctx.h_o_val = (dw - 1) * h_div; #endif } #endif #ifdef CPU_COLDFIRE unsigned old_macsr = coldfire_get_macsr(); coldfire_set_macsr(EMAC_UNSIGNED); #endif #ifdef HAVE_UPSCALER if (sh > dh) #endif { #if defined(CPU_SH) || defined (TEST_SH_MATH) div *= sh; ctx.recip = ((uint32_t)(-div)) / div + 1; #else uint32_t v_div = (1U << 22) / sh; ctx.v_i_val = sh * v_div; ctx.v_o_val = dh * v_div; #endif ret = scale_v_area(rset, &ctx); } #ifdef HAVE_UPSCALER else { #if defined(CPU_SH) || defined (TEST_SH_MATH) div *= dh - 1; ctx.recip = ((uint32_t)(-div)) / div + 1; #else uint32_t v_div = (1U << 22) / dh; ctx.v_i_val = (sh - 1) * v_div; ctx.v_o_val = (dh - 1) * v_div; #endif ret = scale_v_linear(rset, &ctx); } #endif #ifdef CPU_COLDFIRE /* Restore emac status; other modules like tone control filter * calculation may rely on it. */ coldfire_set_macsr(old_macsr); #endif #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(false); #endif if (!ret) return 0; return 1; }