/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #define _ISOC99_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" #include "elf.h" #include "sb.h" #include "dbparser.h" #define _STR(a) #a #define STR(a) _STR(a) #define bug(...) do { fprintf(stderr,"["__FILE__":"STR(__LINE__)"]ERROR: "__VA_ARGS__); exit(1); } while(0) #define bugp(a) do { perror("ERROR: "a); exit(1); } while(0) bool g_debug = false; char **g_extern; int g_extern_count; #define ROUND_UP(val, round) ((((val) + (round) - 1) / (round)) * (round)) /** * Misc */ char *s_getenv(const char *name) { char *s = getenv(name); return s ? s : ""; } void generate_random_data(void *buf, size_t sz) { static int rand_fd = -1; if(rand_fd == -1) rand_fd = open("/dev/urandom", O_RDONLY); if(rand_fd == -1) bugp("failed to open /dev/urandom"); if(read(rand_fd, buf, sz) != (ssize_t)sz) bugp("failed to read /dev/urandom"); } void *xmalloc(size_t s) /* malloc helper, used in elf.c */ { void * r = malloc(s); if(!r) bugp("malloc"); return r; } int convxdigit(char digit, byte *val) { if(digit >= '0' && digit <= '9') { *val = digit - '0'; return 0; } else if(digit >= 'A' && digit <= 'F') { *val = digit - 'A' + 10; return 0; } else if(digit >= 'a' && digit <= 'f') { *val = digit - 'a' + 10; return 0; } else return 1; } /** * Key file parsing */ typedef byte (*key_array_t)[16]; int g_nr_keys; key_array_t g_key_array; static void add_keys(key_array_t ka, int kac) { key_array_t new_ka = xmalloc((g_nr_keys + kac) * 16); memcpy(new_ka, g_key_array, g_nr_keys * 16); memcpy(new_ka + g_nr_keys, ka, kac * 16); free(g_key_array); g_key_array = new_ka; g_nr_keys += kac; } static key_array_t read_keys(const char *key_file, int *num_keys) { int size; struct stat st; int fd = open(key_file,O_RDONLY); if(fd == -1) bugp("opening key file failed"); if(fstat(fd,&st) == -1) bugp("key file stat() failed"); size = st.st_size; char *buf = xmalloc(size); if(read(fd, buf, size) != (ssize_t)size) bugp("reading key file"); close(fd); if(g_debug) printf("Parsing key file '%s'...\n", key_file); *num_keys = size ? 1 : 0; char *ptr = buf; /* allow trailing newline at the end (but no space after it) */ while(ptr != buf + size && (ptr + 1) != buf + size) { if(*ptr++ == '\n') (*num_keys)++; } key_array_t keys = xmalloc(sizeof(byte[16]) * *num_keys); int pos = 0; for(int i = 0; i < *num_keys; i++) { /* skip ws */ while(pos < size && isspace(buf[pos])) pos++; /* enough space ? */ if((pos + 32) > size) bugp("invalid key file"); for(int j = 0; j < 16; j++) { byte a, b; if(convxdigit(buf[pos + 2 * j], &a) || convxdigit(buf[pos + 2 * j + 1], &b)) bugp(" invalid key, it should be a 128-bit key written in hexadecimal\n"); keys[i][j] = (a << 4) | b; } if(g_debug) { printf("Add key: "); for(int j = 0; j < 16; j++) printf("%02x", keys[i][j]); printf("\n"); } pos += 32; } free(buf); return keys; } /** * command file to sb conversion */ #define SB_INST_DATA 0xff struct sb_inst_t { uint8_t inst; /* SB_INST_* */ uint32_t size; // void *data; uint32_t pattern; uint32_t addr; // uint32_t argument; // for call and jump /* for production use */ uint32_t padding_size; uint8_t *padding; }; struct sb_section_t { uint32_t identifier; bool is_data; bool is_cleartext; // data sections are handled as a single SB_INST_DATA virtual instruction int nr_insts; struct sb_inst_t *insts; /* for production use */ uint32_t file_offset; /* in blocks */ uint32_t sec_size; /* in blocks */ }; struct sb_file_t { int nr_sections; struct sb_section_t *sections; struct sb_version_t product_ver; struct sb_version_t component_ver; /* for production use */ uint32_t image_size; /* in blocks */ }; static bool elf_read(void *user, uint32_t addr, void *buf, size_t count) { if(lseek(*(int *)user, addr, SEEK_SET) == (off_t)-1) return false; return read(*(int *)user, buf, count) == (ssize_t)count; } static void elf_printf(void *user, bool error, const char *fmt, ...) { if(!g_debug && !error) return; (void) user; va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); } static void resolve_extern(struct cmd_source_t *src) { if(!src->is_extern) return; src->is_extern = false; if(src->extern_nr < 0 || src->extern_nr >= g_extern_count) bug("There aren't enough file on command file to resolve extern(%d)\n", src->extern_nr); src->filename = g_extern[src->extern_nr]; } static void load_elf_by_id(struct cmd_file_t *cmd_file, const char *id) { struct cmd_source_t *src = db_find_source_by_id(cmd_file, id); if(src == NULL) bug("undefined reference to source '%s'\n", id); /* avoid reloading */ if(src->type == CMD_SRC_ELF && src->loaded) return; if(src->type != CMD_SRC_UNK) bug("source '%s' seen both as elf and binary file\n", id); /* resolve potential extern file */ resolve_extern(src); /* load it */ src->type = CMD_SRC_ELF; int fd = open(src->filename, O_RDONLY); if(fd < 0) bug("cannot open '%s' (id '%s')\n", src->filename, id); if(g_debug) printf("Loading ELF file '%s'...\n", src->filename); elf_init(&src->elf); src->loaded = elf_read_file(&src->elf, elf_read, elf_printf, &fd); close(fd); if(!src->loaded) bug("error loading elf file '%s' (id '%s')\n", src->filename, id); elf_translate_addresses(&src->elf); } static void load_bin_by_id(struct cmd_file_t *cmd_file, const char *id) { struct cmd_source_t *src = db_find_source_by_id(cmd_file, id); if(src == NULL) bug("undefined reference to source '%s'\n", id); /* avoid reloading */ if(src->type == CMD_SRC_BIN && src->loaded) return; if(src->type != CMD_SRC_UNK) bug("source '%s' seen both as elf and binary file\n", id); /* resolve potential extern file */ resolve_extern(src); /* load it */ src->type = CMD_SRC_BIN; int fd = open(src->filename, O_RDONLY); if(fd < 0) bug("cannot open '%s' (id '%s')\n", src->filename, id); if(g_debug) printf("Loading BIN file '%s'...\n", src->filename); src->bin.size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); src->bin.data = xmalloc(src->bin.size); read(fd, src->bin.data, src->bin.size); close(fd); src->loaded = true; } static struct sb_file_t *apply_cmd_file(struct cmd_file_t *cmd_file) { struct sb_file_t *sb = xmalloc(sizeof(struct sb_file_t)); memset(sb, 0, sizeof(struct sb_file_t)); db_generate_default_sb_version(&sb->product_ver); db_generate_default_sb_version(&sb->component_ver); if(g_debug) printf("Applying command file...\n"); /* count sections */ struct cmd_section_t *csec = cmd_file->section_list; while(csec) { sb->nr_sections++; csec = csec->next; } sb->sections = xmalloc(sb->nr_sections * sizeof(struct sb_section_t)); memset(sb->sections, 0, sb->nr_sections * sizeof(struct sb_section_t)); /* flatten sections */ csec = cmd_file->section_list; for(int i = 0; i < sb->nr_sections; i++, csec = csec->next) { struct sb_section_t *sec = &sb->sections[i]; sec->identifier = csec->identifier; /* options */ do { struct cmd_option_t *opt = db_find_option_by_id(csec->opt_list, "cleartext"); if(opt != NULL) { if(opt->is_string) bug("Cleartext section attribute must be an integer\n"); if(opt->val != 0 && opt->val != 1) bug("Cleartext section attribute must be 0 or 1\n"); sec->is_cleartext = opt->val; } }while(0); if(csec->is_data) { sec->is_data = true; sec->nr_insts = 1; sec->insts = xmalloc(sec->nr_insts * sizeof(struct sb_inst_t)); memset(sec->insts, 0, sec->nr_insts * sizeof(struct sb_inst_t)); load_bin_by_id(cmd_file, csec->source_id); struct bin_param_t *bin = &db_find_source_by_id(cmd_file, csec->source_id)->bin; sec->insts[0].inst = SB_INST_DATA; sec->insts[0].size = bin->size; sec->insts[0].data = bin->data; } else { sec->is_data = false; /* count instructions and loads things */ struct cmd_inst_t *cinst = csec->inst_list; while(cinst) { if(cinst->type == CMD_LOAD) { load_elf_by_id(cmd_file, cinst->identifier); struct elf_params_t *elf = &db_find_source_by_id(cmd_file, cinst->identifier)->elf; sec->nr_insts += elf_get_nr_sections(elf); } else if(cinst->type == CMD_JUMP || cinst->type == CMD_CALL) { load_elf_by_id(cmd_file, cinst->identifier); struct elf_params_t *elf = &db_find_source_by_id(cmd_file, cinst->identifier)->elf; if(!elf_get_start_addr(elf, NULL)) bug("cannot jump/call '%s' because it has no starting point !\n", cinst->identifier); sec->nr_insts++; } else if(cinst->type == CMD_CALL_AT || cinst->type == CMD_JUMP_AT) { sec->nr_insts++; } else if(cinst->type == CMD_LOAD_AT) { load_bin_by_id(cmd_file, cinst->identifier); sec->nr_insts++; } else if(cinst->type == CMD_MODE) { sec->nr_insts++; } else bug("die\n"); cinst = cinst->next; } sec->insts = xmalloc(sec->nr_insts * sizeof(struct sb_inst_t)); memset(sec->insts, 0, sec->nr_insts * sizeof(struct sb_inst_t)); /* flatten */ int idx = 0; cinst = csec->inst_list; while(cinst) { if(cinst->type == CMD_LOAD) { struct elf_params_t *elf = &db_find_source_by_id(cmd_file, cinst->identifier)->elf; struct elf_section_t *esec = elf->first_section; while(esec) { if(esec->type == EST_LOAD) { sec->insts[idx].inst = SB_INST_LOAD; sec->insts[idx].addr = esec->addr; sec->insts[idx].size = esec->size; sec->insts[idx++].data = esec->section; } else if(esec->type == EST_FILL) { sec->insts[idx].inst = SB_INST_FILL; sec->insts[idx].addr = esec->addr; sec->insts[idx].size = esec->size; sec->insts[idx++].pattern = esec->pattern; } esec = esec->next; } } else if(cinst->type == CMD_JUMP || cinst->type == CMD_CALL) { struct elf_params_t *elf = &db_find_source_by_id(cmd_file, cinst->identifier)->elf; sec->insts[idx].argument = cinst->argument; sec->insts[idx].inst = (cinst->type == CMD_JUMP) ? SB_INST_JUMP : SB_INST_CALL; sec->insts[idx++].addr = elf->start_addr; } else if(cinst->type == CMD_JUMP_AT || cinst->type == CMD_CALL_AT) { sec->insts[idx].argument = cinst->argument; sec->insts[idx].inst = (cinst->type == CMD_JUMP_AT) ? SB_INST_JUMP : SB_INST_CALL; sec->insts[idx++].addr = cinst->addr; } else if(cinst->type == CMD_LOAD_AT) { struct bin_param_t *bin = &db_find_source_by_id(cmd_file, cinst->identifier)->bin; sec->insts[idx].inst = SB_INST_LOAD; sec->insts[idx].addr = cinst->addr; sec->insts[idx].data = bin->data; sec->insts[idx++].size = bin->size; } else if(cinst->type == CMD_MODE) { sec->insts[idx].inst = SB_INST_MODE; sec->insts[idx++].addr = cinst->argument; } else bug("die\n"); cinst = cinst->next; } } } return sb; } /** * SB file production */ static void fill_gaps(struct sb_file_t *sb) { for(int i = 0; i < sb->nr_sections; i++) { struct sb_section_t *sec = &sb->sections[i]; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst != SB_INST_LOAD) continue; inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size; /* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */ inst->padding = xmalloc(15); generate_random_data(inst->padding, 15); } } } static void compute_sb_offsets(struct sb_file_t *sb) { sb->image_size = 0; /* sb header */ sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE; /* sections headers */ sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE; /* key dictionary */ sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE; /* sections */ for(int i = 0; i < sb->nr_sections; i++) { /* each section has a preliminary TAG command */ sb->image_size += sizeof(struct sb_instruction_tag_t) / BLOCK_SIZE; struct sb_section_t *sec = &sb->sections[i]; if(g_debug) { printf("%s section 0x%08x", sec->is_data ? "Data" : "Boot", sec->identifier); if(sec->is_cleartext) printf(" (cleartext)"); printf("\n"); } sec->file_offset = sb->image_size; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP) { if(g_debug) printf(" %s | addr=0x%08x | arg=0x%08x\n", inst->inst == SB_INST_CALL ? "CALL" : "JUMP", inst->addr, inst->argument); sb->image_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_FILL) { if(g_debug) printf(" FILL | addr=0x%08x | len=0x%08x | pattern=0x%08x\n", inst->addr, inst->size, inst->pattern); sb->image_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_LOAD) { if(g_debug) printf(" LOAD | addr=0x%08x | len=0x%08x\n", inst->addr, inst->size); /* load header */ sb->image_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; /* data + alignment */ sb->image_size += (inst->size + inst->padding_size) / BLOCK_SIZE; sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE; } else if(inst->inst == SB_INST_MODE) { if(g_debug) printf(" MODE | mod=0x%08x", inst->addr); sb->image_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_DATA) { if(g_debug) printf(" DATA | size=0x%08x\n", inst->size); sb->image_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE; sec->sec_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE; } else bug("die on inst %d\n", inst->inst); } } /* final signature */ sb->image_size += 2; } static uint64_t generate_timestamp() { struct tm tm_base = {0, 0, 0, 1, 0, 100, 0, 0, 1, 0, NULL}; /* 2000/1/1 0:00:00 */ time_t t = time(NULL) - mktime(&tm_base); return (uint64_t)t * 1000000L; } static uint16_t swap16(uint16_t t) { return (t << 8) | (t >> 8); } static void fix_version(struct sb_version_t *ver) { ver->major = swap16(ver->major); ver->minor = swap16(ver->minor); ver->revision = swap16(ver->revision); } static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr) { struct sha_1_params_t sha_1_params; sb_hdr->signature[0] = 'S'; sb_hdr->signature[1] = 'T'; sb_hdr->signature[2] = 'M'; sb_hdr->signature[3] = 'P'; sb_hdr->major_ver = IMAGE_MAJOR_VERSION; sb_hdr->minor_ver = IMAGE_MINOR_VERSION; sb_hdr->flags = 0; sb_hdr->image_size = sb->image_size; sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE; sb_hdr->first_boot_sec_id = sb->sections[0].identifier; sb_hdr->nr_keys = g_nr_keys; sb_hdr->nr_sections = sb->nr_sections; sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE; sb_hdr->key_dict_off = sb_hdr->header_size + sb_hdr->sec_hdr_size * sb_hdr->nr_sections; sb_hdr->first_boot_tag_off = sb_hdr->key_dict_off + sizeof(struct sb_key_dictionary_entry_t) * sb_hdr->nr_keys / BLOCK_SIZE; generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0)); generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1)); sb_hdr->timestamp = generate_timestamp(); sb_hdr->product_ver = sb->product_ver; fix_version(&sb_hdr->product_ver); sb_hdr->component_ver = sb->component_ver; fix_version(&sb_hdr->component_ver); sb_hdr->drive_tag = 0; sha_1_init(&sha_1_params); sha_1_update(&sha_1_params, &sb_hdr->signature[0], sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header)); sha_1_finish(&sha_1_params); sha_1_output(&sha_1_params, sb_hdr->sha1_header); } static void produce_sb_section_header(struct sb_section_t *sec, struct sb_section_header_t *sec_hdr) { sec_hdr->identifier = sec->identifier; sec_hdr->offset = sec->file_offset; sec_hdr->size = sec->sec_size; sec_hdr->flags = (sec->is_data ? 0 : SECTION_BOOTABLE) | (sec->is_cleartext ? SECTION_CLEARTEXT : 0); } static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr) { uint8_t sum = 90; byte *ptr = (byte *)hdr; for(int i = 1; i < 16; i++) sum += ptr[i]; return sum; } static void produce_section_tag_cmd(struct sb_section_t *sec, struct sb_instruction_tag_t *tag, bool is_last) { tag->hdr.opcode = SB_INST_TAG; tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0; tag->identifier = sec->identifier; tag->len = sec->sec_size; tag->flags = (sec->is_data ? 0 : SECTION_BOOTABLE) | (sec->is_cleartext ? SECTION_CLEARTEXT : 0); tag->hdr.checksum = instruction_checksum(&tag->hdr); } void produce_sb_instruction(struct sb_inst_t *inst, struct sb_instruction_common_t *cmd) { memset(cmd, 0, sizeof(struct sb_instruction_common_t)); cmd->hdr.opcode = inst->inst; switch(inst->inst) { case SB_INST_CALL: case SB_INST_JUMP: cmd->addr = inst->addr; cmd->data = inst->argument; break; case SB_INST_FILL: cmd->addr = inst->addr; cmd->len = inst->size; cmd->data = inst->pattern; break; case SB_INST_LOAD: cmd->addr = inst->addr; cmd->len = inst->size; cmd->data = crc_continue(crc(inst->data, inst->size), inst->padding, inst->padding_size); break; case SB_INST_MODE: cmd->data = inst->addr; break; default: bug("die\n"); } cmd->hdr.checksum = instruction_checksum(&cmd->hdr); } static void produce_sb_file(struct sb_file_t *sb, const char *filename) { int fd = open(filename, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); if(fd < 0) bugp("cannot open output file"); byte real_key[16]; byte (*cbc_macs)[16] = xmalloc(16 * g_nr_keys); /* init CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) memset(cbc_macs[i], 0, 16); fill_gaps(sb); compute_sb_offsets(sb); generate_random_data(real_key, sizeof(real_key)); /* global SHA-1 */ struct sha_1_params_t file_sha1; sha_1_init(&file_sha1); /* produce and write header */ struct sb_header_t sb_hdr; produce_sb_header(sb, &sb_hdr); sha_1_update(&file_sha1, (byte *)&sb_hdr, sizeof(sb_hdr)); write(fd, &sb_hdr, sizeof(sb_hdr)); /* update CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) cbc_mac((byte *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE, g_key_array[i], cbc_macs[i], &cbc_macs[i], 1); /* produce and write section headers */ for(int i = 0; i < sb_hdr.nr_sections; i++) { struct sb_section_header_t sb_sec_hdr; produce_sb_section_header(&sb->sections[i], &sb_sec_hdr); sha_1_update(&file_sha1, (byte *)&sb_sec_hdr, sizeof(sb_sec_hdr)); write(fd, &sb_sec_hdr, sizeof(sb_sec_hdr)); /* update CBC-MACs */ for(int j = 0; j < g_nr_keys; j++) cbc_mac((byte *)&sb_sec_hdr, NULL, sizeof(sb_sec_hdr) / BLOCK_SIZE, g_key_array[j], cbc_macs[j], &cbc_macs[j], 1); } /* produce key dictionary */ for(int i = 0; i < g_nr_keys; i++) { struct sb_key_dictionary_entry_t entry; memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16); cbc_mac(real_key, entry.key, sizeof(real_key) / BLOCK_SIZE, g_key_array[i], (byte *)&sb_hdr, NULL, 1); write(fd, &entry, sizeof(entry)); sha_1_update(&file_sha1, (byte *)&entry, sizeof(entry)); } /* produce sections data */ for(int i = 0; i< sb_hdr.nr_sections; i++) { /* produce tag command */ struct sb_instruction_tag_t tag_cmd; produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections); if(g_nr_keys > 0) cbc_mac((byte *)&tag_cmd, (byte *)&tag_cmd, sizeof(tag_cmd) / BLOCK_SIZE, real_key, (byte *)&sb_hdr, NULL, 1); sha_1_update(&file_sha1, (byte *)&tag_cmd, sizeof(tag_cmd)); write(fd, &tag_cmd, sizeof(tag_cmd)); /* produce other commands */ byte cur_cbc_mac[16]; memcpy(cur_cbc_mac, (byte *)&sb_hdr, 16); for(int j = 0; j < sb->sections[i].nr_insts; j++) { struct sb_inst_t *inst = &sb->sections[i].insts[j]; /* command */ if(inst->inst != SB_INST_DATA) { struct sb_instruction_common_t cmd; produce_sb_instruction(inst, &cmd); if(g_nr_keys > 0 && !sb->sections[i].is_cleartext) cbc_mac((byte *)&cmd, (byte *)&cmd, sizeof(cmd) / BLOCK_SIZE, real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, (byte *)&cmd, sizeof(cmd)); write(fd, &cmd, sizeof(cmd)); } /* data */ if(inst->inst == SB_INST_LOAD || inst->inst == SB_INST_DATA) { uint32_t sz = inst->size + inst->padding_size; byte *data = xmalloc(sz); memcpy(data, inst->data, inst->size); memcpy(data + inst->size, inst->padding, inst->padding_size); if(g_nr_keys > 0 && !sb->sections[i].is_cleartext) cbc_mac(data, data, sz / BLOCK_SIZE, real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, data, sz); write(fd, data, sz); free(data); } } } /* write file SHA-1 */ byte final_sig[32]; sha_1_finish(&file_sha1); sha_1_output(&file_sha1, final_sig); generate_random_data(final_sig + 20, 12); if(g_nr_keys > 0) cbc_mac(final_sig, final_sig, 2, real_key, (byte *)&sb_hdr, NULL, 1); write(fd, final_sig, 32); close(fd); } void usage(void) { printf("Usage: elftosb [options | file]...\n"); printf("Options:\n"); printf(" -?/--help:\t\tDisplay this message\n"); printf(" -o \tSet output file\n"); printf(" -c \tSet command file\n"); printf(" -d/--debug\tEnable debug output\n"); printf(" -k \t\tAdd key file\n"); printf(" -z\t\tAdd zero key\n"); exit(1); } static byte g_zero_key[16] = {0}; int main(int argc, char **argv) { char *cmd_filename = NULL; char *output_filename = NULL; while(1) { static struct option long_options[] = { {"help", no_argument, 0, '?'}, {"debug", no_argument, 0, 'd'}, {0, 0, 0, 0} }; int c = getopt_long(argc, argv, "?do:c:k:z", long_options, NULL); if(c == -1) break; switch(c) { case 'd': g_debug = true; break; case '?': usage(); break; case 'o': output_filename = optarg; break; case 'c': cmd_filename = optarg; break; case 'k': { int kac; key_array_t ka = read_keys(optarg, &kac); add_keys(ka, kac); break; } case 'z': { add_keys(&g_zero_key, 1); break; } default: abort(); } } if(!cmd_filename) bug("You must specify a command file\n"); if(!output_filename) bug("You must specify an output file\n"); g_extern = &argv[optind]; g_extern_count = argc - optind; if(g_debug) { printf("key: %d\n", g_nr_keys); for(int i = 0; i < g_nr_keys; i++) { for(int j = 0; j < 16; j++) printf(" %02x", g_key_array[i][j]); printf("\n"); } for(int i = 0; i < g_extern_count; i++) printf("extern(%d)=%s\n", i, g_extern[i]); } struct cmd_file_t *cmd_file = db_parse_file(cmd_filename); struct sb_file_t *sb_file = apply_cmd_file(cmd_file); produce_sb_file(sb_file, output_filename); return 0; }