/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id$ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include #include #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_qmf_c.h" #include "sbr_syntax.h" #ifdef FIXED_POINT #define FAAD_SYNTHESIS_SCALE(X) ((X)>>1) #define FAAD_ANALYSIS_SCALE1(X) ((X)>>4) #define FAAD_ANALYSIS_SCALE2(X) ((X)) #define FAAD_ANALYSIS_SCALE3(X) ((X)) #else #define FAAD_SYNTHESIS_SCALE(X) ((X)/64.0f) #define FAAD_ANALYSIS_SCALE1(X) ((X)) #define FAAD_ANALYSIS_SCALE2(X) (2.0f*(X)) #define FAAD_ANALYSIS_SCALE3(X) ((X)/32.0f) #endif void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, qmf_t X[MAX_NTSR][64], uint8_t offset, uint8_t kx) { real_t u[64] MEM_ALIGN_ATTR; #ifndef SBR_LOW_POWER real_t real[32] MEM_ALIGN_ATTR; real_t imag[32] MEM_ALIGN_ATTR; #else real_t y[32] MEM_ALIGN_ATTR; #endif qmf_t *pX; uint32_t in = 0; uint32_t l, idx0, idx1; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int32_t n; /* shift input buffer x */ /* input buffer is not shifted anymore, x is implemented as double ringbuffer */ //memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); /* add new samples to input buffer x */ idx0 = qmfa->x_index + 31; idx1 = idx0 + 320; for (n = 0; n < 32; n+=4) { qmfa->x[idx0--] = qmfa->x[idx1--] = (input[in++]); qmfa->x[idx0--] = qmfa->x[idx1--] = (input[in++]); qmfa->x[idx0--] = qmfa->x[idx1--] = (input[in++]); qmfa->x[idx0--] = qmfa->x[idx1--] = (input[in++]); } /* window and summation to create array u */ for (n = 0; n < 32; n++) { idx0 = qmfa->x_index + n; idx1 = n * 20; u[n] = FAAD_ANALYSIS_SCALE1( MUL_F(qmfa->x[idx0 ], qmf_c[idx1 ]) + MUL_F(qmfa->x[idx0 + 64], qmf_c[idx1 + 2]) + MUL_F(qmfa->x[idx0 + 128], qmf_c[idx1 + 4]) + MUL_F(qmfa->x[idx0 + 192], qmf_c[idx1 + 6]) + MUL_F(qmfa->x[idx0 + 256], qmf_c[idx1 + 8])); } for (n = 32; n < 64; n++) { idx0 = qmfa->x_index + n; idx1 = n * 20 - 639; u[n] = FAAD_ANALYSIS_SCALE1( MUL_F(qmfa->x[idx0 ], qmf_c[idx1 ]) + MUL_F(qmfa->x[idx0 + 64], qmf_c[idx1 + 2]) + MUL_F(qmfa->x[idx0 + 128], qmf_c[idx1 + 4]) + MUL_F(qmfa->x[idx0 + 192], qmf_c[idx1 + 6]) + MUL_F(qmfa->x[idx0 + 256], qmf_c[idx1 + 8])); } /* update ringbuffer index */ qmfa->x_index -= 32; if (qmfa->x_index < 0) qmfa->x_index = (320-32); /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { if (n < kx) { QMF_RE(X[l + offset][n]) = FAAD_ANALYSIS_SCALE2(u[n]); } else { QMF_RE(X[l + offset][n]) = 0; } } #else /* #ifdef SBR_LOW_POWER */ // Reordering of data moved from DCT_IV to here idx0 = 30; idx1 = 63; imag[31] = u[ 1]; real[ 0] = u[ 0]; for (n = 1; n < 31; n+=3) { imag[idx0--] = u[n+1]; real[n ] = -u[idx1--]; imag[idx0--] = u[n+2]; real[n+1] = -u[idx1--]; imag[idx0--] = u[n+3]; real[n+2] = -u[idx1--]; } imag[ 0] = u[32]; real[31] = -u[33]; // dct4_kernel is DCT_IV without reordering which is done before and after FFT dct4_kernel(real, imag); // Reordering of data moved from DCT_IV to here /* Step 1: Calculate all non-zero pairs */ pX = X[l + offset]; for (n = 0; n < kx/2; n++) { idx0 = 2*n; idx1 = idx0 + 1; QMF_RE(pX[idx0]) = FAAD_ANALYSIS_SCALE2( real[n ]); QMF_IM(pX[idx0]) = FAAD_ANALYSIS_SCALE2( imag[n ]); QMF_RE(pX[idx1]) = FAAD_ANALYSIS_SCALE2(-imag[31-n]); QMF_IM(pX[idx1]) = FAAD_ANALYSIS_SCALE2(-real[31-n]); } /* Step 2: Calculate a single pair with half zero'ed */ if (kx&1) { idx0 = 2*n; idx1 = idx0 + 1; QMF_RE(pX[idx0]) = FAAD_ANALYSIS_SCALE2( real[n]); QMF_IM(pX[idx0]) = FAAD_ANALYSIS_SCALE2( imag[n]); QMF_RE(pX[idx1]) = QMF_IM(pX[idx1]) = 0; n++; } /* Step 3: All other are zero'ed */ for (; n < 16; n++) { idx0 = 2*n; idx1 = idx0 + 1; QMF_RE(pX[idx0]) = QMF_IM(pX[idx0]) = 0; QMF_RE(pX[idx1]) = QMF_IM(pX[idx1]) = 0; } #endif /* #ifdef SBR_LOW_POWER */ } } #ifdef SBR_LOW_POWER void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSR][64], real_t *output) { real_t x[16] MEM_ALIGN_ATTR; real_t y[16] MEM_ALIGN_ATTR; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffers */ /* we are not shifting v, it is a double ringbuffer */ //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); /* calculate 64 samples */ for (k = 0; k < 16; k++) { y[k] = FAAD_ANALYSIS_SCALE3((QMF_RE(X[l][k]) - QMF_RE(X[l][31-k]))); x[k] = FAAD_ANALYSIS_SCALE3((QMF_RE(X[l][k]) + QMF_RE(X[l][31-k]))); } /* even n samples */ DCT2_16_unscaled(x, x); /* odd n samples */ DCT4_16(y, y); for (n = 8; n < 24; n++) { qmfs->v[qmfs->v_index + n*2 ] = qmfs->v[qmfs->v_index + 640 + n*2 ] = x[n-8]; qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8]; } for (n = 0; n < 16; n++) { qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n]; } qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0; for (n = 1; n < 16; n++) { qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n]; } /* calculate 32 output samples and window */ for (k = 0; k < 32; k++) { output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[ 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[1 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[2 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[3 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[4 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[5 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[6 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[7 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[8 + 2*k*10]) + MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[9 + 2*k*10]); } /* update the ringbuffer index */ qmfs->v_index -= 64; if (qmfs->v_index < 0) qmfs->v_index = (640-64); } } void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSR][64], real_t *output) { real_t x[64] MEM_ALIGN_ATTR; real_t y[64] MEM_ALIGN_ATTR; int16_t n, k, out = 0; uint8_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffers */ /* we are not shifting v, it is a double ringbuffer */ //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); /* calculate 128 samples */ for (k = 0; k < 32; k++) { y[k] = FAAD_ANALYSIS_SCALE3((QMF_RE(X[l][k]) - QMF_RE(X[l][63-k]))); x[k] = FAAD_ANALYSIS_SCALE3((QMF_RE(X[l][k]) + QMF_RE(X[l][63-k]))); } /* even n samples */ DCT2_32_unscaled(x, x); /* odd n samples */ DCT4_32(y, y); for (n = 16; n < 48; n++) { qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 1280 + n*2 ] = x[n-16]; qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 1280 + n*2+1] = y[n-16]; } for (n = 0; n < 32; n++) { qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 1280 + n] = qmfs->v[qmfs->v_index + 64-n]; } qmfs->v[qmfs->v_index + 96] = qmfs->v[qmfs->v_index + 1280 + 96] = 0; for (n = 1; n < 32; n++) { qmfs->v[qmfs->v_index + 96+n] = qmfs->v[qmfs->v_index + 1280 + 96+n] = -qmfs->v[qmfs->v_index + 96-n]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[ k*10]) + MUL_F(qmfs->v[qmfs->v_index + 192 + k], qmf_c[1 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[2 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 256 + 192 + k], qmf_c[3 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[4 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 512 + 192 + k], qmf_c[5 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 768 + k], qmf_c[6 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 768 + 192 + k], qmf_c[7 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 1024 + k], qmf_c[8 + k*10]) + MUL_F(qmfs->v[qmfs->v_index + 1024 + 192 + k], qmf_c[9 + k*10]); } /* update the ringbuffer index */ qmfs->v_index -= 128; if (qmfs->v_index < 0) qmfs->v_index = (1280-128); } } #else /* #ifdef SBR_LOW_POWER */ static const complex_t qmf32_pre_twiddle[] = { { FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) }, { FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) }, { FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) }, { FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) }, { FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) }, { FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) }, { FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) }, { FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) }, { FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) }, { FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) }, { FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) }, { FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) }, { FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) }, { FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) }, { FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) }, { FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) }, { FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) }, { FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) }, { FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) }, { FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) }, { FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) }, { FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) }, { FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) }, { FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) }, { FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) }, { FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) }, { FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) }, { FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) }, { FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) }, { FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) }, { FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) }, { FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) } }; #define FAAD_CMPLX_PRETWIDDLE_SUB(k) \ (MUL_F(QMF_RE(X[l][k]), RE(qmf32_pre_twiddle[k])) - \ MUL_F(QMF_IM(X[l][k]), IM(qmf32_pre_twiddle[k]))) #define FAAD_CMPLX_PRETWIDDLE_ADD(k) \ (MUL_F(QMF_IM(X[l][k]), RE(qmf32_pre_twiddle[k])) + \ MUL_F(QMF_RE(X[l][k]), IM(qmf32_pre_twiddle[k]))) void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSR][64], real_t *output) { real_t x1[32] MEM_ALIGN_ATTR; real_t x2[32] MEM_ALIGN_ATTR; int32_t n, k, idx0, idx1, out = 0; uint32_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffer v */ /* buffer is not shifted, we are using a ringbuffer */ //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); /* calculate 64 samples */ /* complex pre-twiddle */ for (k = 0; k < 32;) { x1[k] = FAAD_CMPLX_PRETWIDDLE_SUB(k); x2[k] = FAAD_CMPLX_PRETWIDDLE_ADD(k); k++; x1[k] = FAAD_CMPLX_PRETWIDDLE_SUB(k); x2[k] = FAAD_CMPLX_PRETWIDDLE_ADD(k); k++; x1[k] = FAAD_CMPLX_PRETWIDDLE_SUB(k); x2[k] = FAAD_CMPLX_PRETWIDDLE_ADD(k); k++; x1[k] = FAAD_CMPLX_PRETWIDDLE_SUB(k); x2[k] = FAAD_CMPLX_PRETWIDDLE_ADD(k); k++; } /* transform */ DCT4_32(x1, x1); DST4_32(x2, x2); idx0 = qmfs->v_index; idx1 = qmfs->v_index + 63; for (n = 0; n < 32; n+=2) { qmfs->v[idx0] = qmfs->v[idx0 + 640] = -x1[n ] + x2[n ]; idx0++; qmfs->v[idx1] = qmfs->v[idx1 + 640] = x1[n ] + x2[n ]; idx1--; qmfs->v[idx0] = qmfs->v[idx0 + 640] = -x1[n+1] + x2[n+1]; idx0++; qmfs->v[idx1] = qmfs->v[idx1 + 640] = x1[n+1] + x2[n+1]; idx1--; } /* calculate 32 output samples and window */ for (k = 0; k < 32; k++) { idx0 = qmfs->v_index + k; idx1 = 2*k*10; output[out++] = FAAD_SYNTHESIS_SCALE( MUL_F(qmfs->v[idx0 ], qmf_c[idx1 ]) + MUL_F(qmfs->v[idx0 + 96], qmf_c[idx1+1]) + MUL_F(qmfs->v[idx0 + 128], qmf_c[idx1+2]) + MUL_F(qmfs->v[idx0 + 224], qmf_c[idx1+3]) + MUL_F(qmfs->v[idx0 + 256], qmf_c[idx1+4]) + MUL_F(qmfs->v[idx0 + 352], qmf_c[idx1+5]) + MUL_F(qmfs->v[idx0 + 384], qmf_c[idx1+6]) + MUL_F(qmfs->v[idx0 + 480], qmf_c[idx1+7]) + MUL_F(qmfs->v[idx0 + 512], qmf_c[idx1+8]) + MUL_F(qmfs->v[idx0 + 608], qmf_c[idx1+9])); } /* update ringbuffer index */ qmfs->v_index -= 64; if (qmfs->v_index < 0) qmfs->v_index = (640 - 64); } } void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSR][64], real_t *output) { real_t real1[32] MEM_ALIGN_ATTR; real_t imag1[32] MEM_ALIGN_ATTR; real_t real2[32] MEM_ALIGN_ATTR; real_t imag2[32] MEM_ALIGN_ATTR; qmf_t *pX; real_t *p_buf_1, *p_buf_3; int32_t n, k, idx0, idx1, out = 0; uint32_t l; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { /* shift buffer v */ /* buffer is not shifted, we use double ringbuffer */ //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); /* calculate 128 samples */ pX = X[l]; for (k = 0; k < 32; k++) { idx0 = 2*k; idx1 = idx0+1; real1[ k] = QMF_RE(pX[idx0]); imag2[ k] = QMF_IM(pX[idx0]); imag1[31-k] = QMF_RE(pX[idx1]); real2[31-k] = QMF_IM(pX[idx1]); } // dct4_kernel is DCT_IV without reordering which is done before and after FFT dct4_kernel(real1, imag1); dct4_kernel(real2, imag2); p_buf_1 = qmfs->v + qmfs->v_index; p_buf_3 = p_buf_1 + 1280; idx0 = 0; idx1 = 127; for (n = 0; n < 32; n++) { p_buf_1[idx0] = p_buf_3[idx0] = real2[ n] - real1[ n]; idx0++; p_buf_1[idx1] = p_buf_3[idx1] = real2[ n] + real1[ n]; idx1--; p_buf_1[idx0] = p_buf_3[idx0] = imag2[31-n] + imag1[31-n]; idx0++; p_buf_1[idx1] = p_buf_3[idx1] = imag2[31-n] - imag1[31-n]; idx1--; } p_buf_1 = qmfs->v + qmfs->v_index; /* calculate 64 output samples and window */ #ifdef CPU_ARM const real_t *qtab = qmf_c; real_t *pbuf = p_buf_1; for (k = 0; k < 64; k++, pbuf++) { real_t *pout = &output[out++]; asm volatile ( "ldmia %[qtab]!, { r0-r3 } \n\t" "ldr r4, [%[pbuf]] \n\t" "ldr r7, [%[pbuf], #192*4] \n\t" "smull r5, r6, r4, r0 \n\t" "ldr r4, [%[pbuf], #256*4] \n\t" "smlal r5, r6, r7, r1 \n\t" "ldr r7, [%[pbuf], #448*4] \n\t" "smlal r5, r6, r4, r2 \n\t" "ldr r4, [%[pbuf], #512*4] \n\t" "smlal r5, r6, r7, r3 \n\t" "ldmia %[qtab]!, { r0-r3 } \n\t" "ldr r7, [%[pbuf], #704*4] \n\t" "smlal r5, r6, r4, r0 \n\t" "ldr r4, [%[pbuf], #768*4] \n\t" "smlal r5, r6, r7, r1 \n\t" "ldr r7, [%[pbuf], #960*4] \n\t" "smlal r5, r6, r4, r2 \n\t" "mov r2, #1024*4 \n\t" "ldmia %[qtab]!, { r0-r1 } \n\t" "ldr r4, [%[pbuf], r2] \n\t" "smlal r5, r6, r7, r3 \n\t" "mov r2, #1216*4 \n\t" "ldr r7, [%[pbuf], r2] \n\t" "smlal r5, r6, r4, r0 \n\t" "smlal r5, r6, r7, r1 \n\t" "str r6, [%[pout]] \n" : [qtab] "+r" (qtab) : [pbuf] "r" (pbuf), [pout] "r" (pout) : "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "memory"); } #elif defined CPU_COLDFIRE const real_t *qtab = qmf_c; real_t *pbuf = p_buf_1; for (k = 0; k < 64; k++, pbuf++) { real_t *pout = &output[out++]; asm volatile ( "move.l (%[pbuf]), %%d5 \n" "movem.l (%[qtab]), %%d0-%%d4 \n" "mac.l %%d0, %%d5, (192*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d1, %%d5, (256*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d2, %%d5, (448*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d3, %%d5, (512*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d4, %%d5, (704*4, %[pbuf]), %%d5, %%acc0 \n" "lea.l (20, %[qtab]), %[qtab] \n" "movem.l (%[qtab]), %%d0-%%d4 \n" "mac.l %%d0, %%d5, (768*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d1, %%d5, (960*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d2, %%d5, (1024*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d3, %%d5, (1216*4, %[pbuf]), %%d5, %%acc0 \n" "mac.l %%d4, %%d5, %%acc0 \n" "lea.l (20, %[qtab]), %[qtab] \n" "movclr.l %%acc0, %%d0 \n" "move.l %%d0, (%[pout]) \n" : [qtab] "+a" (qtab) : [pbuf] "a" (pbuf), [pout] "a" (pout) : "d0", "d1", "d2", "d3", "d4", "d5", "memory"); } #else for (k = 0; k < 64; k++) { idx0 = k*10; output[out++] = FAAD_SYNTHESIS_SCALE( MUL_F(p_buf_1[k ], qmf_c[idx0 ]) + MUL_F(p_buf_1[k+ 192 ], qmf_c[idx0+1]) + MUL_F(p_buf_1[k+ 256 ], qmf_c[idx0+2]) + MUL_F(p_buf_1[k+ 256+192], qmf_c[idx0+3]) + MUL_F(p_buf_1[k+ 512 ], qmf_c[idx0+4]) + MUL_F(p_buf_1[k+ 512+192], qmf_c[idx0+5]) + MUL_F(p_buf_1[k+ 768 ], qmf_c[idx0+6]) + MUL_F(p_buf_1[k+ 768+192], qmf_c[idx0+7]) + MUL_F(p_buf_1[k+1024 ], qmf_c[idx0+8]) + MUL_F(p_buf_1[k+1024+192], qmf_c[idx0+9])); } #endif /* update ringbuffer index */ qmfs->v_index -= 128; if (qmfs->v_index < 0) qmfs->v_index = (1280 - 128); } } #endif /* #ifdef SBR_LOW_POWER */ #endif /* #ifdef SBR_DEC */