/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Miika Pekkarinen * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* TODO: - Allow cache live updating while transparent rebuild is running. */ #include "config.h" #include #include #include "string-extra.h" #include #include #include "debug.h" #include "system.h" #include "logf.h" #include "dircache.h" #include "thread.h" #include "kernel.h" #include "usb.h" #include "file.h" #include "buffer.h" #include "dir.h" #include "storage.h" #if CONFIG_RTC #include "time.h" #include "timefuncs.h" #endif #include "rbpaths.h" /* Queue commands. */ #define DIRCACHE_BUILD 1 #define DIRCACHE_STOP 2 #if (MEMORYSIZE > 8) #define MAX_OPEN_DIRS 12 #else #define MAX_OPEN_DIRS 8 #endif static DIR_CACHED opendirs[MAX_OPEN_DIRS]; /* Cache Layout: * * x - array of struct dircache_entry * r - reserved buffer * d - name buffer for the d_name entry of the struct dircache_entry * |xxxxxx|rrrrrrrrr|dddddd| * * subsequent x are allocated from the front, d are allocated from the back, * using the reserve buffer for entries added after initial scan * * after a while the cache may look like: * |xxxxxxxx|rrrrr|dddddddd| * * after a reboot, the reserve buffer is restored in it's size, so that the * total allocation size grows * |xxxxxxxx|rrrrrrrrr|dddddddd| */ static struct dircache_entry *fd_bindings[MAX_OPEN_FILES]; /* this points to the beginnging of the buffer and the first entry */ static struct dircache_entry *dircache_root; /* these point to the start and end of the name buffer (d above) */ static char *d_names_start, *d_names_end; /* put "." and ".." into the d_names buffer to enable easy pointer logic */ static char *dot, *dotdot; #ifdef HAVE_MULTIVOLUME static struct dircache_entry *append_position; #endif static bool dircache_initialized = false; static bool dircache_initializing = false; static bool thread_enabled = false; static unsigned long allocated_size = DIRCACHE_LIMIT; static unsigned long dircache_size = 0; static unsigned long entry_count = 0; static unsigned long reserve_used = 0; static unsigned int cache_build_ticks = 0; static unsigned long appflags = 0; static struct event_queue dircache_queue SHAREDBSS_ATTR; static long dircache_stack[(DEFAULT_STACK_SIZE + 0x400)/sizeof(long)]; static const char dircache_thread_name[] = "dircache"; static struct fdbind_queue fdbind_cache[MAX_PENDING_BINDINGS]; static int fdbind_idx = 0; /* --- Internal cache structure control functions --- */ #ifdef HAVE_EEPROM_SETTINGS /** * Open the dircache file to save a snapshot on disk */ static int open_dircache_file(unsigned flags, int permissions) { if (permissions != 0) return open(DIRCACHE_FILE, flags, permissions); return open(DIRCACHE_FILE, flags); } /** * Remove the snapshot file */ static int remove_dircache_file(void) { return remove(DIRCACHE_FILE); } #endif /** * Internal function to allocate a new dircache_entry from memory. */ static struct dircache_entry* allocate_entry(void) { struct dircache_entry *next_entry; if (dircache_size > allocated_size - MAX_PATH*2) { logf("size limit reached"); return NULL; } next_entry = &dircache_root[entry_count++]; next_entry->d_name = NULL; next_entry->up = NULL; next_entry->down = NULL; next_entry->next = NULL; dircache_size += sizeof(struct dircache_entry); return next_entry; } /** * Internal function to allocate a dircache_entry and set * ->next entry pointers. */ static struct dircache_entry* dircache_gen_next(struct dircache_entry *ce) { struct dircache_entry *next_entry; if ( (next_entry = allocate_entry()) == NULL) return NULL; next_entry->up = ce->up; ce->next = next_entry; return next_entry; } /* * Internal function to allocate a dircache_entry and set * ->down entry pointers. */ static struct dircache_entry* dircache_gen_down(struct dircache_entry *ce) { struct dircache_entry *next_entry; if ( (next_entry = allocate_entry()) == NULL) return NULL; next_entry->up = ce; ce->down = next_entry; return next_entry; } /** * Returns true if there is an event waiting in the queue * that requires the current operation to be aborted. */ static bool check_event_queue(void) { struct queue_event ev; if(!queue_peek(&dircache_queue, &ev)) return false; switch (ev.id) { case DIRCACHE_STOP: case SYS_USB_CONNECTED: #ifdef HAVE_HOTSWAP case SYS_FS_CHANGED: #endif return true; } return false; } #if (CONFIG_PLATFORM & PLATFORM_NATIVE) /* scan and build static data (avoid redundancy on stack) */ static struct { #ifdef HAVE_MULTIVOLUME int volume; #endif struct fat_dir *dir; struct fat_direntry *direntry; }sab; static int sab_process_dir(unsigned long startcluster, struct dircache_entry *ce) { /* normally, opendir expects a full fat_dir as parent but in our case, * it's completely useless because we don't modify anything * WARNING: this heavily relies on current FAT implementation ! */ /* those field are necessary to update the FAT entry in case of modification here we don't touch anything so we put dummy values */ sab.dir->entry = 0; sab.dir->entrycount = 0; sab.dir->file.firstcluster = 0; /* open directory */ int rc = fat_opendir(IF_MV2(sab.volume,) sab.dir, startcluster, sab.dir); if(rc < 0) { logf("fat_opendir failed: %d", rc); return rc; } /* first pass : read dir */ struct dircache_entry *first_ce = ce; /* read through directory */ while((rc = fat_getnext(sab.dir, sab.direntry)) >= 0 && sab.direntry->name[0]) { if(!strcmp(".", sab.direntry->name) || !strcmp("..", sab.direntry->name)) continue; size_t size = strlen(sab.direntry->name) + 1; ce->d_name = (d_names_start -= size); ce->startcluster = sab.direntry->firstcluster; ce->info.size = sab.direntry->filesize; ce->info.attribute = sab.direntry->attr; ce->info.wrtdate = sab.direntry->wrtdate; ce->info.wrttime = sab.direntry->wrttime; strcpy(ce->d_name, sab.direntry->name); dircache_size += size; if(ce->info.attribute & FAT_ATTR_DIRECTORY) dircache_gen_down(ce); ce = dircache_gen_next(ce); if(ce == NULL) return -5; /* When simulator is used, it's only safe to yield here. */ if(thread_enabled) { /* Stop if we got an external signal. */ if(check_event_queue()) return -6; yield(); } } /* add "." and ".." */ ce->d_name = dot; ce->info.attribute = FAT_ATTR_DIRECTORY; ce->startcluster = startcluster; ce->info.size = 0; ce->down = first_ce; ce = dircache_gen_next(ce); ce->d_name = dotdot; ce->info.attribute = FAT_ATTR_DIRECTORY; ce->startcluster = (first_ce->up ? first_ce->up->startcluster : 0); ce->info.size = 0; ce->down = first_ce->up; /* second pass: recurse ! */ ce = first_ce; while(rc >= 0 && ce) { if(ce->d_name != NULL && ce->down != NULL && strcmp(ce->d_name, ".") && strcmp(ce->d_name, "..")) rc = sab_process_dir(ce->startcluster, ce->down); ce = ce->next; } return rc; } /* used during the generation */ static struct fat_dir sab_fat_dir; static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce) { memset(ce, 0, sizeof(struct dircache_entry)); #ifdef HAVE_MULTIVOLUME if (volume > 0) { ce->d_name = (d_names_start -= sizeof(VOL_NAMES)); size_t len = snprintf(ce->d_name, VOL_ENUM_POS + 3, VOL_NAMES, volume)+1; dircache_size += len; ce->info.attribute = FAT_ATTR_DIRECTORY | FAT_ATTR_VOLUME; ce->info.size = 0; append_position = dircache_gen_next(ce); ce = dircache_gen_down(ce); } #endif struct fat_direntry direntry; /* ditto */ #ifdef HAVE_MULTIVOLUME sab.volume = volume; #endif sab.dir = &sab_fat_dir; sab.direntry = &direntry; return sab_process_dir(0, ce); } #elif (CONFIG_PLATFORM & PLATFORM_HOSTED) /* PLATFORM_HOSTED */ static char sab_path[MAX_PATH]; static int sab_process_dir(struct dircache_entry *ce) { struct dirent_uncached *entry; struct dircache_entry *first_ce = ce; DIR_UNCACHED *dir = opendir_uncached(sab_path); if(dir == NULL) { logf("Failed to opendir_uncached(%s)", sab_path); return -1; } while((entry = readdir_uncached(dir))) { if(!strcmp(".", entry->d_name) || !strcmp("..", entry->d_name)) continue; size_t size = strlen(entry->d_name) + 1; ce->d_name = (d_names_start -= size); ce->info = entry->info; strcpy(ce->d_name, entry->d_name); dircache_size += size; if(entry->info.attribute & ATTR_DIRECTORY) { dircache_gen_down(ce); if(ce->down == NULL) { closedir_uncached(dir); return -1; } /* save current paths size */ int pathpos = strlen(sab_path); /* append entry */ strlcpy(&sab_path[pathpos], "/", sizeof(sab_path) - pathpos); strlcpy(&sab_path[pathpos+1], entry->d_name, sizeof(sab_path) - pathpos - 1); int rc = sab_process_dir(ce->down); /* restore path */ sab_path[pathpos] = '\0'; if(rc < 0) { closedir_uncached(dir); return rc; } } ce = dircache_gen_next(ce); if(ce == NULL) return -5; /* When simulator is used, it's only safe to yield here. */ if(thread_enabled) { /* Stop if we got an external signal. */ if(check_event_queue()) return -1; yield(); } } /* add "." and ".." */ ce->d_name = dot; ce->info.attribute = ATTR_DIRECTORY; ce->info.size = 0; ce->down = first_ce; ce = dircache_gen_next(ce); ce->d_name = dotdot; ce->info.attribute = ATTR_DIRECTORY; ce->info.size = 0; ce->down = first_ce->up; closedir_uncached(dir); return 0; } static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce) { #ifdef HAVE_MULTIVOLUME (void) volume; #endif memset(ce, 0, sizeof(struct dircache_entry)); strlcpy(sab_path, "/", sizeof sab_path); return sab_process_dir(ce); } #endif /* PLATFORM_NATIVE */ /** * Internal function to get a pointer to dircache_entry for a given filename. * path: Absolute path to a file or directory (see comment) * go_down: Returns the first entry of the directory given by the path (see comment) * * As a a special case, accept path="" as an alias for "/". * Also if the path omits the first '/', it will be accepted. * * * If get_down=true: * If path="/", the returned entry is the first of root directory (ie dircache_root) * Otherwise, if 'entry' is the returned value when get_down=false, * the functions returns entry->down (which can be NULL) * * * If get_down=false: * If path="/chunk_1/chunk_2/.../chunk_n" then this functions returns the entry * root_entry()->chunk_1->chunk_2->...->chunk_(n-1) * Which means that * dircache_get_entry(path)->d_name == chunk_n * * If path="/", the returned entry is NULL. * If the entry doesn't exist, return NULL * * NOTE: this functions silently handles double '/' */ static struct dircache_entry* dircache_get_entry(const char *path, bool go_down) { char namecopy[MAX_PATH]; char* part; char* end; bool at_root = true; struct dircache_entry *cache_entry = dircache_root; strlcpy(namecopy, path, sizeof(namecopy)); for(part = strtok_r(namecopy, "/", &end); part; part = strtok_r(NULL, "/", &end)) { /* If request another chunk, the current entry has to be directory * and so cache_entry->down has to be non-NULL/ * Special case of root because it's already the first entry of the root directory * * NOTE: this is safe even if cache_entry->down is NULL */ if(!at_root) cache_entry = cache_entry->down; else at_root = false; /* scan dir for name */ while(cache_entry != NULL) { /* skip unused entries */ if(cache_entry->d_name == NULL) { cache_entry = cache_entry->next; continue; } /* compare names */ if(!strcasecmp(part, cache_entry->d_name)) break; /* go to next entry */ cache_entry = cache_entry->next; } /* handle not found case */ if(cache_entry == NULL) return NULL; } /* NOTE: here cache_entry!=NULL so taking ->down is safe */ if(go_down) return at_root ? cache_entry : cache_entry->down; else return at_root ? NULL : cache_entry; } #ifdef HAVE_EEPROM_SETTINGS #define DIRCACHE_MAGIC 0x00d0c0a1 struct dircache_maindata { long magic; long size; long entry_count; long appflags; struct dircache_entry *root_entry; char *d_names_start; }; /** * Function to load the internal cache structure from disk to initialize * the dircache really fast and little disk access. */ int dircache_load(void) { struct dircache_maindata maindata; ssize_t bytes_read; int fd; if (dircache_initialized) return -1; logf("Loading directory cache"); dircache_size = 0; fd = open_dircache_file(O_RDONLY, 0); if (fd < 0) return -2; bytes_read = read(fd, &maindata, sizeof(struct dircache_maindata)); if (bytes_read != sizeof(struct dircache_maindata) || maindata.magic != DIRCACHE_MAGIC || maindata.size <= 0) { logf("Dircache file header error"); close(fd); remove_dircache_file(); return -3; } dircache_root = buffer_alloc(maindata.size + DIRCACHE_RESERVE); entry_count = maindata.entry_count; appflags = maindata.appflags; /* read the dircache file into memory, * start with the struct dircache_entries */ ssize_t bytes_to_read = entry_count*sizeof(struct dircache_entry); bytes_read = read(fd, dircache_root, bytes_to_read); if (bytes_read != bytes_to_read) { logf("Dircache read failed #1"); return -6; } /* continue with the d_names. Fix up pointers to them if needed */ d_names_start = ((char*)&dircache_root[entry_count] + DIRCACHE_RESERVE); bytes_to_read = maindata.size - bytes_to_read; bytes_read = read(fd, d_names_start, bytes_to_read); close(fd); remove_dircache_file(); if (bytes_read != bytes_to_read) { logf("Dircache read failed #2"); return -7; } d_names_end = &d_names_start[bytes_read]; dot = d_names_end - sizeof("."); dotdot = dot - sizeof(".."); /* d_names are in reverse order, so the last entry points to the first string */ intptr_t offset_d_names = maindata.d_names_start - d_names_start; intptr_t offset_entries = maindata.root_entry - dircache_root; /* offset_entries is less likely to differ, so check if it's 0 in the loop * offset_d_names however is almost always non-zero, since dircache_save() * creates a file which causes the reserve buffer to be used. since * we allocate a new, empty DIRCACHE_RESERVE here, the strings are * farther behind */ if (offset_entries != 0 || offset_d_names != 0) { for(unsigned i = 0; i < entry_count; i++) { if (dircache_root[i].d_name) dircache_root[i].d_name -= offset_d_names; if (offset_entries == 0) continue; if (dircache_root[i].next) dircache_root[i].next -= offset_entries; if (dircache_root[i].up) dircache_root[i].up -= offset_entries; if (dircache_root[i].down) dircache_root[i].down -= offset_entries; } } /* Cache successfully loaded. */ dircache_size = maindata.size; allocated_size = dircache_size + DIRCACHE_RESERVE; reserve_used = 0; logf("Done, %ld KiB used", dircache_size / 1024); dircache_initialized = true; memset(fd_bindings, 0, sizeof(fd_bindings)); return 0; } /** * Function to save the internal cache stucture to disk for fast loading * on boot. */ int dircache_save(void) { struct dircache_maindata maindata; int fd; unsigned long bytes_written; remove_dircache_file(); if (!dircache_initialized) return -1; logf("Saving directory cache"); fd = open_dircache_file(O_WRONLY | O_CREAT | O_TRUNC, 0666); maindata.magic = DIRCACHE_MAGIC; maindata.size = dircache_size; maindata.root_entry = dircache_root; maindata.d_names_start = d_names_start; maindata.entry_count = entry_count; maindata.appflags = appflags; /* Save the info structure */ bytes_written = write(fd, &maindata, sizeof(struct dircache_maindata)); if (bytes_written != sizeof(struct dircache_maindata)) { close(fd); logf("dircache: write failed #1"); return -2; } /* Dump whole directory cache to disk * start by writing the dircache_entries */ size_t bytes_to_write = entry_count*sizeof(struct dircache_entry); bytes_written = write(fd, dircache_root, bytes_to_write); if (bytes_written != bytes_to_write) { logf("dircache: write failed #2"); return -3; } /* continue with the d_names */ bytes_to_write = d_names_end - d_names_start; bytes_written = write(fd, d_names_start, bytes_to_write); close(fd); if (bytes_written != bytes_to_write) { logf("dircache: write failed #3"); return -4; } return 0; } #endif /* HAVE_EEPROM_SETTINGS */ /** * Internal function which scans the disk and creates the dircache structure. */ static int dircache_do_rebuild(void) { struct dircache_entry* root_entry; unsigned int start_tick; int i; /* Measure how long it takes build the cache. */ start_tick = current_tick; dircache_initializing = true; appflags = 0; /* reset dircache and alloc root entry */ entry_count = 0; root_entry = allocate_entry(); #ifdef HAVE_MULTIVOLUME append_position = root_entry; for (i = NUM_VOLUMES; i >= 0; i--) { if (fat_ismounted(i)) { #endif cpu_boost(true); #ifdef HAVE_MULTIVOLUME if (dircache_scan_and_build(IF_MV2(i,) append_position) < 0) #else if (dircache_scan_and_build(IF_MV2(0,) root_entry) < 0) #endif /* HAVE_MULTIVOLUME */ { logf("dircache_scan_and_build failed"); cpu_boost(false); dircache_size = 0; dircache_initializing = false; return -2; } cpu_boost(false); #ifdef HAVE_MULTIVOLUME } } #endif logf("Done, %ld KiB used", dircache_size / 1024); dircache_initialized = true; dircache_initializing = false; cache_build_ticks = current_tick - start_tick; /* Initialized fd bindings. */ memset(fd_bindings, 0, sizeof(fd_bindings)); for (i = 0; i < fdbind_idx; i++) dircache_bind(fdbind_cache[i].fd, fdbind_cache[i].path); fdbind_idx = 0; if (thread_enabled) { if (allocated_size - dircache_size < DIRCACHE_RESERVE) reserve_used = DIRCACHE_RESERVE - (allocated_size - dircache_size); } return 1; } /** * Internal thread that controls transparent cache building. */ static void dircache_thread(void) { struct queue_event ev; while (1) { queue_wait(&dircache_queue, &ev); switch (ev.id) { #ifdef HAVE_HOTSWAP case SYS_FS_CHANGED: if (!dircache_initialized) break; dircache_initialized = false; #endif case DIRCACHE_BUILD: thread_enabled = true; dircache_do_rebuild(); thread_enabled = false; break ; case DIRCACHE_STOP: logf("Stopped the rebuilding."); dircache_initialized = false; break ; #if (CONFIG_PLATFORM & PLATFORM_NATIVE) case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); usb_wait_for_disconnect(&dircache_queue); break ; #endif } } } static void generate_dot_d_names(void) { dot = (d_names_start -= sizeof(".")); dotdot = (d_names_start -= sizeof("..")); dircache_size += sizeof(".") + sizeof(".."); strcpy(dot, "."); strcpy(dotdot, ".."); } /** * Start scanning the disk to build the dircache. * Either transparent or non-transparent build method is used. */ int dircache_build(int last_size) { if (dircache_initialized || thread_enabled) return -3; logf("Building directory cache"); #ifdef HAVE_EEPROM_SETTINGS remove_dircache_file(); #endif /* Background build, dircache has been previously allocated */ if (dircache_size > 0) { thread_enabled = true; dircache_initializing = true; queue_post(&dircache_queue, DIRCACHE_BUILD, 0); return 2; } if (last_size > DIRCACHE_RESERVE && last_size < DIRCACHE_LIMIT ) { allocated_size = last_size + DIRCACHE_RESERVE; dircache_root = buffer_alloc(allocated_size); d_names_start = d_names_end = ((char*)dircache_root)+allocated_size-1; dircache_size = 0; thread_enabled = true; generate_dot_d_names(); /* Start a transparent rebuild. */ queue_post(&dircache_queue, DIRCACHE_BUILD, 0); return 3; } /* struct dircache_entrys are allocated from the beginning, * their corresponding d_name from the end * after generation the buffer will be compacted with DIRCACHE_RESERVE * free bytes in between */ audiobuf = (char*)(((intptr_t)audiobuf & ~0x03) + 0x04); dircache_root = (struct dircache_entry*)audiobuf; d_names_start = d_names_end = audiobufend - 1; dircache_size = 0; generate_dot_d_names(); /* Start a non-transparent rebuild. */ int res = dircache_do_rebuild(); /** compact the dircache buffer **/ if (res >= 0) { char* dst = ((char*)&dircache_root[entry_count] + DIRCACHE_RESERVE); ssize_t offset = d_names_start - dst; if (offset > 0) { ssize_t size_to_move = dircache_size - entry_count*sizeof(struct dircache_entry); /* move d_names down, use memmove if overlap */ if (offset > size_to_move) memcpy(dst, d_names_start, size_to_move); else memmove(dst, d_names_start, size_to_move); /* fix up pointers to the d_names */ for(unsigned i = 0; i < entry_count; i++) dircache_root[i].d_name -= offset; d_names_end -= offset; /* equivalent to dircache_size + DIRCACHE_RESERVE */ allocated_size = (d_names_end - (char*)dircache_root); reserve_used = 0; audiobuf += allocated_size; } else /* something went wrong */ return -1; } return res; } /** * Steal the allocated dircache buffer and disable dircache. */ void* dircache_steal_buffer(long *size) { dircache_disable(); if (dircache_size == 0) { *size = 0; return NULL; } *size = dircache_size + (DIRCACHE_RESERVE-reserve_used); return dircache_root; } /** * Main initialization function that must be called before any other * operations within the dircache. */ void dircache_init(void) { int i; int thread_id __attribute__((unused)); dircache_initialized = false; dircache_initializing = false; memset(opendirs, 0, sizeof(opendirs)); for (i = 0; i < MAX_OPEN_DIRS; i++) { opendirs[i].theent.d_name = buffer_alloc(MAX_PATH); } queue_init(&dircache_queue, true); thread_id = create_thread(dircache_thread, dircache_stack, sizeof(dircache_stack), 0, dircache_thread_name IF_PRIO(, PRIORITY_BACKGROUND) IF_COP(, CPU)); #ifdef HAVE_IO_PRIORITY thread_set_io_priority(thread_id,IO_PRIORITY_BACKGROUND); #endif } /** * Returns true if dircache has been initialized and is ready to be used. */ bool dircache_is_enabled(void) { return dircache_initialized; } /** * Returns true if dircache is being initialized. */ bool dircache_is_initializing(void) { return dircache_initializing || thread_enabled; } /** * Set application flags used to determine if dircache is still intact. */ void dircache_set_appflag(long mask) { appflags |= mask; } /** * Get application flags used to determine if dircache is still intact. */ bool dircache_get_appflag(long mask) { return dircache_is_enabled() && (appflags & mask); } /** * Returns the current number of entries (directories and files) in the cache. */ int dircache_get_entry_count(void) { return entry_count; } /** * Returns the allocated space for dircache (without reserve space). */ int dircache_get_cache_size(void) { return dircache_is_enabled() ? dircache_size : 0; } /** * Returns how many bytes of the reserve allocation for live cache * updates have been used. */ int dircache_get_reserve_used(void) { return dircache_is_enabled() ? reserve_used : 0; } /** * Returns the time in kernel ticks that took to build the cache. */ int dircache_get_build_ticks(void) { return dircache_is_enabled() ? cache_build_ticks : 0; } /** * Disables the dircache. Usually called on shutdown or when * accepting a usb connection. */ void dircache_disable(void) { int i; bool cache_in_use; if (thread_enabled) queue_post(&dircache_queue, DIRCACHE_STOP, 0); while (thread_enabled) sleep(1); dircache_initialized = false; logf("Waiting for cached dirs to release"); do { cache_in_use = false; for (i = 0; i < MAX_OPEN_DIRS; i++) { if (!opendirs[i].regulardir && opendirs[i].busy) { cache_in_use = true; sleep(1); break ; } } } while (cache_in_use) ; logf("Cache released"); entry_count = 0; } /** * Usermode function to return dircache_entry pointer to the given path. */ const struct dircache_entry *dircache_get_entry_ptr(const char *filename) { if (!dircache_initialized || filename == NULL) return NULL; return dircache_get_entry(filename, false); } /* * build a path from an entry upto the root using recursion * * it appends '/' after strlcat, therefore buf[0] needs to be prepared with '/' * and it will leave a trailing '/' * * returns the position of that trailing '/' so it can be deleted afterwards * (or, in case of truncation, the position of the nul byte */ static size_t copy_path_helper(const struct dircache_entry *entry, char *buf, size_t size) { /* has parent? */ if (entry->up) copy_path_helper(entry->up, buf, size); size_t len = strlcat(buf, entry->d_name, size); if (len < size) { buf[len++] = '/'; buf[len] = '\0'; } return len-1; } /** * Function to copy the full absolute path from dircache to the given buffer * using the given dircache_entry pointer. * * Returns the size of the resulting string, or 0 if an error occured */ size_t dircache_copy_path(const struct dircache_entry *entry, char *buf, size_t size) { if (!size || !buf) return 0; buf[0] = '/'; size_t res = copy_path_helper(entry, buf, size); /* fixup trailing '/' */ buf[res] = '\0'; return res; } /* --- Directory cache live updating functions --- */ static int block_until_ready(void) { /* Block until dircache has been built. */ while (!dircache_initialized && dircache_is_initializing()) sleep(1); if (!dircache_initialized) return -1; return 0; } static struct dircache_entry* dircache_new_entry(const char *path, int attribute) { struct dircache_entry *entry; char basedir[MAX_PATH*2]; char *new; long last_cache_size = dircache_size; strlcpy(basedir, path, sizeof(basedir)); new = strrchr(basedir, '/'); if (new == NULL) { logf("error occurred"); dircache_initialized = false; return NULL; } *new = '\0'; new++; entry = dircache_get_entry(basedir, true); if (entry == NULL) { logf("basedir not found!"); logf("%s", basedir); dircache_initialized = false; return NULL; } if (reserve_used + 2*sizeof(struct dircache_entry) + strlen(new)+1 >= DIRCACHE_RESERVE) { logf("not enough space"); dircache_initialized = false; return NULL; } while (entry->next != NULL) entry = entry->next; if (entry->d_name != NULL) { entry = dircache_gen_next(entry); if (entry == NULL) { dircache_initialized = false; return NULL; } } size_t size = strlen(new) + 1; entry->d_name = (d_names_start -= size); entry->startcluster = 0; memset(&entry->info, 0, sizeof(entry->info)); entry->info.attribute = attribute; strcpy(entry->d_name, new); dircache_size += size; if (attribute & ATTR_DIRECTORY) { logf("gen_down"); dircache_gen_down(entry); } reserve_used += dircache_size - last_cache_size; return entry; } void dircache_bind(int fd, const char *path) { struct dircache_entry *entry; /* Queue requests until dircache has been built. */ if (!dircache_initialized && dircache_is_initializing()) { if (fdbind_idx >= MAX_PENDING_BINDINGS) return ; strlcpy(fdbind_cache[fdbind_idx].path, path, sizeof(fdbind_cache[fdbind_idx].path)); fdbind_cache[fdbind_idx].fd = fd; fdbind_idx++; return ; } if (!dircache_initialized) return ; logf("bind: %d/%s", fd, path); entry = dircache_get_entry(path, false); if (entry == NULL) { logf("not found!"); dircache_initialized = false; return ; } fd_bindings[fd] = entry; } void dircache_update_filesize(int fd, long newsize, long startcluster) { if (!dircache_initialized || fd < 0) return ; if (fd_bindings[fd] == NULL) { logf("dircache fd(%d) access error", fd); dircache_initialized = false; return ; } fd_bindings[fd]->info.size = newsize; fd_bindings[fd]->startcluster = startcluster; } void dircache_update_filetime(int fd) { #if CONFIG_RTC == 0 (void)fd; #else short year; struct tm *now = get_time(); if (!dircache_initialized || fd < 0) return ; if (fd_bindings[fd] == NULL) { logf("dircache fd access error"); dircache_initialized = false; return ; } year = now->tm_year+1900-1980; fd_bindings[fd]->info.wrtdate = (((year)&0x7f)<<9) | (((now->tm_mon+1)&0xf)<<5) | (((now->tm_mday)&0x1f)); fd_bindings[fd]->info.wrttime = (((now->tm_hour)&0x1f)<<11) | (((now->tm_min)&0x3f)<<5) | (((now->tm_sec/2)&0x1f)); #endif } void dircache_mkdir(const char *path) { /* Test ok. */ if (block_until_ready()) return ; logf("mkdir: %s", path); dircache_new_entry(path, ATTR_DIRECTORY); } void dircache_rmdir(const char *path) { /* Test ok. */ struct dircache_entry *entry; if (block_until_ready()) return ; logf("rmdir: %s", path); entry = dircache_get_entry(path, false); if (entry == NULL || entry->down == NULL) { logf("not found or not a directory!"); dircache_initialized = false; return ; } entry->down = NULL; entry->d_name = NULL; } /* Remove a file from cache */ void dircache_remove(const char *name) { /* Test ok. */ struct dircache_entry *entry; if (block_until_ready()) return ; logf("remove: %s", name); entry = dircache_get_entry(name, false); if (entry == NULL) { logf("not found!"); dircache_initialized = false; return ; } entry->d_name = NULL; } void dircache_rename(const char *oldpath, const char *newpath) { /* Test ok. */ struct dircache_entry *entry, *newentry; struct dircache_entry oldentry; char absolute_path[MAX_PATH*2]; char *p; if (block_until_ready()) return ; logf("rename: %s->%s", oldpath, newpath); entry = dircache_get_entry(oldpath, false); if (entry == NULL) { logf("not found!"); dircache_initialized = false; return ; } /* Delete the old entry. */ entry->d_name = NULL; /** If we rename the same filename twice in a row, we need to * save the data, because the entry will be re-used. */ oldentry = *entry; /* Generate the absolute path for destination if necessary. */ if (newpath[0] != '/') { strlcpy(absolute_path, oldpath, sizeof(absolute_path)); p = strrchr(absolute_path, '/'); if (!p) { logf("Invalid path"); dircache_initialized = false; return ; } *p = '\0'; strlcpy(p, absolute_path, sizeof(absolute_path)-strlen(p)); newpath = absolute_path; } newentry = dircache_new_entry(newpath, entry->info.attribute); if (newentry == NULL) { dircache_initialized = false; return ; } newentry->down = oldentry.down; newentry->startcluster = oldentry.startcluster; newentry->info.size = oldentry.info.size; newentry->info.wrtdate = oldentry.info.wrtdate; newentry->info.wrttime = oldentry.info.wrttime; } void dircache_add_file(const char *path, long startcluster) { struct dircache_entry *entry; if (block_until_ready()) return ; logf("add file: %s", path); entry = dircache_new_entry(path, 0); if (entry == NULL) return ; entry->startcluster = startcluster; } static bool is_disable_msg_pending(void) { return check_event_queue(); } DIR_CACHED* opendir_cached(const char* name) { int dd; DIR_CACHED* pdir = opendirs; if ( name[0] != '/' ) { DEBUGF("Only absolute paths supported right now\n"); return NULL; } /* find a free dir descriptor */ for ( dd=0; ddbusy ) break; if ( dd == MAX_OPEN_DIRS ) { DEBUGF("Too many dirs open\n"); errno = EMFILE; return NULL; } pdir->busy = true; if (!dircache_initialized || is_disable_msg_pending()) { pdir->internal_entry = NULL; pdir->regulardir = opendir_uncached(name); } else { pdir->regulardir = NULL; pdir->internal_entry = dircache_get_entry(name, true); pdir->theent.info.attribute = -1; /* used to make readdir_cached aware of the first call */ } if (pdir->internal_entry == NULL && pdir->regulardir == NULL) { pdir->busy = false; return NULL; } return pdir; } struct dirent_cached* readdir_cached(DIR_CACHED* dir) { struct dircache_entry *ce = dir->internal_entry; struct dirent_uncached *regentry; if (!dir->busy) return NULL; if (dir->regulardir != NULL) { regentry = readdir_uncached(dir->regulardir); if (regentry == NULL) return NULL; strlcpy(dir->theent.d_name, regentry->d_name, MAX_PATH); dir->theent.startcluster = regentry->startcluster; dir->theent.info = regentry->info; return &dir->theent; } /* if theent.attribute=-1 then this is the first call */ /* otherwise, this is is not so we first take the entry's ->next */ /* NOTE: normal file can't have attribute=-1 */ if(dir->theent.info.attribute != -1) ce = ce->next; /* skip unused entries */ while(ce != NULL && ce->d_name == NULL) ce = ce->next; if (ce == NULL) return NULL; strlcpy(dir->theent.d_name, ce->d_name, MAX_PATH); /* Can't do `dir->theent = *ce` because that modifies the d_name pointer. */ dir->theent.startcluster = ce->startcluster; dir->theent.info = ce->info; dir->internal_entry = ce; //logf("-> %s", ce->d_name); return &dir->theent; } int closedir_cached(DIR_CACHED* dir) { if (!dir->busy) return -1; dir->busy=false; if (dir->regulardir != NULL) return closedir_uncached(dir->regulardir); return 0; } int mkdir_cached(const char *name) { int rc=mkdir_uncached(name); if (rc >= 0) dircache_mkdir(name); return(rc); } int rmdir_cached(const char* name) { int rc=rmdir_uncached(name); if(rc >= 0) dircache_rmdir(name); return(rc); }