/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id: lcd-nano2g.c 28868 2010-12-21 06:59:17Z Buschel $ * * Copyright (C) 2009 by Dave Chapman * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "hwcompat.h" #include "kernel.h" #include "lcd.h" #include "system.h" #include "cpu.h" #include "pmu-target.h" #include "power.h" #include "string.h" #define R_HORIZ_GRAM_ADDR_SET 0x200 #define R_VERT_GRAM_ADDR_SET 0x201 #define R_WRITE_DATA_TO_GRAM 0x202 #define R_HORIZ_ADDR_START_POS 0x210 #define R_HORIZ_ADDR_END_POS 0x211 #define R_VERT_ADDR_START_POS 0x212 #define R_VERT_ADDR_END_POS 0x213 /* LCD type 1 register defines */ #define R_COLUMN_ADDR_SET 0x2a #define R_ROW_ADDR_SET 0x2b #define R_MEMORY_WRITE 0x2c /** globals **/ int lcd_type; /* also needed in debug-s5l8702.c */ static struct dma_lli lcd_lli[(LCD_WIDTH * LCD_HEIGHT - 1) / 0xfff] CACHEALIGN_ATTR; static struct semaphore lcd_wakeup; static struct mutex lcd_mutex; static uint16_t lcd_dblbuf[LCD_HEIGHT][LCD_WIDTH]; static inline void s5l_lcd_write_cmd_data(int cmd, int data) { while (LCD_STATUS & 0x10); LCD_WCMD = cmd; while (LCD_STATUS & 0x10); LCD_WDATA = (data & 0xff) | ((data & 0x7f00) << 1); } static inline void s5l_lcd_write_cmd(unsigned short cmd) { while (LCD_STATUS & 0x10); LCD_WCMD = cmd; } static inline void s5l_lcd_write_data(unsigned short data) { while (LCD_STATUS & 0x10); LCD_WDATA = data; } /*** hardware configuration ***/ int lcd_default_contrast(void) { return 0x1f; } void lcd_set_contrast(int val) { (void)val; } void lcd_set_invert_display(bool yesno) { (void)yesno; } void lcd_set_flip(bool yesno) { (void)yesno; } bool lcd_active(void) { return true; } void lcd_shutdown(void) { mutex_lock(&lcd_mutex); pmu_write(0x2b, 0); /* Kill the backlight, instantly. */ pmu_write(0x29, 0); if (lcd_type & 2) { s5l_lcd_write_cmd_data(0x7, 0x172); s5l_lcd_write_cmd_data(0x30, 0x3ff); sleep(HZ / 10); s5l_lcd_write_cmd_data(0x7, 0x120); s5l_lcd_write_cmd_data(0x30, 0x0); s5l_lcd_write_cmd_data(0x100, 0x780); s5l_lcd_write_cmd_data(0x7, 0x0); s5l_lcd_write_cmd_data(0x101, 0x260); s5l_lcd_write_cmd_data(0x102, 0xa9); sleep(HZ / 30); s5l_lcd_write_cmd_data(0x100, 0x700); s5l_lcd_write_cmd_data(0x100, 0x704); } else if (lcd_type == 1) { s5l_lcd_write_cmd(0x28); s5l_lcd_write_cmd(0x10); sleep(HZ / 10); } else { s5l_lcd_write_cmd(0x28); sleep(HZ / 20); s5l_lcd_write_cmd(0x10); sleep(HZ / 20); } mutex_unlock(&lcd_mutex); } #ifdef HAVE_LCD_SLEEP void lcd_sleep(void) { lcd_shutdown(); } #endif /* LCD init */ void lcd_init_device(void) { /* Detect lcd type */ semaphore_init(&lcd_wakeup, 1, 0); mutex_init(&lcd_mutex); lcd_type = (PDAT6 & 0x30) >> 4; while (!(LCD_STATUS & 0x2)); LCD_CONFIG = 0x80100db0; } /*** Update functions ***/ static inline void lcd_write_pixel(fb_data pixel) { mutex_lock(&lcd_mutex); LCD_WDATA = pixel; mutex_unlock(&lcd_mutex); } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) ICODE_ATTR; void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); } /* Line write helper function. */ extern void lcd_write_line(const fb_data *addr, int pixelcount, const unsigned int lcd_base_addr); static void displaylcd_setup(int x, int y, int width, int height) ICODE_ATTR; static void displaylcd_setup(int x, int y, int width, int height) { mutex_lock(&lcd_mutex); while (DMAC0C4CONFIG & 1) semaphore_wait(&lcd_wakeup, HZ / 10); int xe = (x + width) - 1; /* max horiz */ int ye = (y + height) - 1; /* max vert */ if (lcd_type & 2) { s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x); s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS, xe); s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS, y); s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS, ye); s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET, x); s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET, y); s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM); } else { s5l_lcd_write_cmd(R_COLUMN_ADDR_SET); s5l_lcd_write_data(x >> 8); s5l_lcd_write_data(x & 0xff); s5l_lcd_write_data(xe >> 8); s5l_lcd_write_data(xe & 0xff); s5l_lcd_write_cmd(R_ROW_ADDR_SET); s5l_lcd_write_data(y >> 8); s5l_lcd_write_data(y & 0xff); s5l_lcd_write_data(ye >> 8); s5l_lcd_write_data(ye & 0xff); s5l_lcd_write_cmd(R_MEMORY_WRITE); } } static void displaylcd_dma(int pixels) ICODE_ATTR; static void displaylcd_dma(int pixels) { int i; void* data = lcd_dblbuf; for (i = -1; i < (int)ARRAYLEN(lcd_lli) && pixels > 0; i++, pixels -= 0xfff) { bool last = i + 1 >= (int)ARRAYLEN(lcd_lli) || pixels <= 0xfff; struct dma_lli* lli = i < 0 ? (struct dma_lli*)((int)&DMAC0C4LLI) : &lcd_lli[i]; lli->srcaddr = data; lli->dstaddr = (void*)((int)&LCD_WDATA); lli->nextlli = last ? NULL : &lcd_lli[i + 1]; lli->control = 0x70240000 | (last ? pixels : 0xfff) | (last ? 0x80000000 : 0) | 0x4000000; data += 0x1ffe; } commit_dcache(); DMAC0C4CONFIG = 0x88c1; mutex_unlock(&lcd_mutex); } void INT_DMAC0C4(void) ICODE_ATTR; void INT_DMAC0C4(void) { DMAC0INTTCCLR = 0x10; semaphore_release(&lcd_wakeup); } /* Update a fraction of the display. */ void lcd_update_rect(int, int, int, int) ICODE_ATTR; void lcd_update_rect(int x, int y, int width, int height) { int pixels = width * height; fb_data* p = &lcd_framebuffer[y][x]; uint16_t* out = lcd_dblbuf[0]; displaylcd_setup(x, y, width, height); /* Copy display bitmap to hardware */ if (LCD_WIDTH == width) { /* Write all lines at once */ memcpy(out, p, pixels * 2); } else { do { /* Write a single line */ memcpy(out, p, width * 2); p += LCD_WIDTH; out += width; } while (--height); } displaylcd_dma(pixels); } /* Line write helper function for lcd_yuv_blit. Writes two lines of yuv420. */ extern void lcd_write_yuv420_lines(unsigned char const * const src[3], uint16_t* outbuf, int width, int stride); /* Blit a YUV bitmap directly to the LCD */ void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) ICODE_ATTR; void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { unsigned int z; unsigned char const * yuv_src[3]; width = (width + 1) & ~1; /* ensure width is even */ int pixels = width * height; uint16_t* out = lcd_dblbuf[0]; z = stride * src_y; yuv_src[0] = src[0] + z + src_x; yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1); yuv_src[2] = src[2] + (yuv_src[1] - src[1]); displaylcd_setup(x, y, width, height); height >>= 1; do { lcd_write_yuv420_lines(yuv_src, out, width, stride); yuv_src[0] += stride << 1; yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; out += width << 1; } while (--height); displaylcd_dma(pixels); }