/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 Rob Purchase * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "nand.h" #include "ata-nand-target.h" #include "system.h" #include #include "led.h" #include "panic.h" #include "nand_id.h" /* The NAND driver is currently work-in-progress and as such contains some dead code and debug stuff, such as the next few lines. */ #include "lcd.h" #include "font.h" #include "button.h" #include "storage.h" #include #define SECTOR_SIZE 512 /* #define USE_TCC_LPT */ /* #define USE_ECC_CORRECTION */ /* for compatibility */ int ata_spinup_time = 0; long last_disk_activity = -1; /** static, private data **/ static bool initialized = false; static struct mutex ata_mtx SHAREDBSS_ATTR; #if defined(COWON_D2) || defined(IAUDIO_7) #define SEGMENT_ID_BIGENDIAN #define BLOCKS_PER_SEGMENT 4 #else #define BLOCKS_PER_SEGMENT 1 #endif /* NB: blocks_per_segment should become a runtime check based on NAND id */ /* Segment type identifiers - main data area */ #define SEGMENT_MAIN_LPT 0x12 #define SEGMENT_MAIN_DATA1 0x13 #define SEGMENT_MAIN_CACHE 0x15 #define SEGMENT_MAIN_DATA2 0x17 /* We don't touch the hidden area at all - these are for reference */ #define SEGMENT_HIDDEN_LPT 0x22 #define SEGMENT_HIDDEN_DATA1 0x23 #define SEGMENT_HIDDEN_CACHE 0x25 #define SEGMENT_HIDDEN_DATA2 0x27 /* Offsets to spare area data */ #define OFF_CACHE_PAGE_LOBYTE 2 #define OFF_CACHE_PAGE_HIBYTE 3 #define OFF_SEGMENT_TYPE 4 #ifdef SEGMENT_ID_BIGENDIAN #define OFF_LOG_SEG_LOBYTE 7 #define OFF_LOG_SEG_HIBYTE 6 #else #define OFF_LOG_SEG_LOBYTE 6 #define OFF_LOG_SEG_HIBYTE 7 #endif /* Chip characteristics, initialised by nand_get_chip_info() */ static int page_size = 0; static int spare_size = 0; static int pages_per_block = 0; static int blocks_per_bank = 0; static int pages_per_bank = 0; static int row_cycles = 0; static int col_cycles = 0; static int total_banks = 0; static int sectors_per_page = 0; static int bytes_per_segment = 0; static int sectors_per_segment = 0; static int segments_per_bank = 0; /* Maximum values for static buffers */ #define MAX_PAGE_SIZE 4096 #define MAX_SPARE_SIZE 128 #define MAX_BLOCKS_PER_BANK 8192 #define MAX_PAGES_PER_BLOCK 128 #define MAX_BANKS 4 #define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / BLOCKS_PER_SEGMENT) /* Logical/Physical translation table */ struct lpt_entry { short bank; short phys_segment; }; static struct lpt_entry lpt_lookup[MAX_SEGMENTS]; /* Write Caches */ #define MAX_WRITE_CACHES 8 struct write_cache { short bank; short phys_segment; short log_segment; short page_map[MAX_PAGES_PER_BLOCK * BLOCKS_PER_SEGMENT]; }; static struct write_cache write_caches[MAX_WRITE_CACHES]; static int write_caches_in_use = 0; #ifdef USE_TCC_LPT /* Read buffer (used for reading LPT blocks only) */ static unsigned char page_buf[MAX_PAGE_SIZE + MAX_SPARE_SIZE] __attribute__ ((aligned (4))); #endif #ifdef USE_ECC_CORRECTION static unsigned int ecc_sectors_corrected = 0; static unsigned int ecc_bits_corrected = 0; static unsigned int ecc_fail_count = 0; #endif /* Conversion functions */ static inline int phys_segment_to_page_addr(int phys_segment, int page_in_seg) { #if BLOCKS_PER_SEGMENT == 4 /* D2 */ int page_addr = phys_segment * pages_per_block * 2; if (page_in_seg & 1) { /* Data is located in block+1 */ page_addr += pages_per_block; } if (page_in_seg & 2) { /* Data is located in second plane */ page_addr += (blocks_per_bank/2) * pages_per_block; } page_addr += page_in_seg/4; #elif BLOCKS_PER_SEGMENT == 1 /* M200 */ int page_addr = (phys_segment * pages_per_block) + page_in_seg; #endif return page_addr; } /* NAND physical access functions */ static void nand_chip_select(int bank) { if (bank == -1) { /* Disable both chip selects */ NAND_GPIO_CLEAR(CS_GPIO_BIT); NFC_CTRL |= NFC_CS0 | NFC_CS1; } else { /* NFC chip select */ if (bank & 1) { NFC_CTRL &= ~NFC_CS0; NFC_CTRL |= NFC_CS1; } else { NFC_CTRL |= NFC_CS0; NFC_CTRL &= ~NFC_CS1; } /* Secondary chip select */ if (bank & 2) NAND_GPIO_SET(CS_GPIO_BIT); else NAND_GPIO_CLEAR(CS_GPIO_BIT); } } static void nand_read_id(int bank, unsigned char* id_buf) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Reset NAND controller */ NFC_RST = 0; /* Set slow cycle timings since the chip is as yet unidentified */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Reset command */ NFC_CMD = 0xFF; /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Read ID command, single address cycle */ NFC_CMD = 0x90; NFC_SADDR = 0x00; /* Read the 5 chip ID bytes */ for (i = 0; i < 5; i++) { id_buf[i] = NFC_SDATA & 0xFF; } nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_read_uid(int bank, unsigned int* uid_buf) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Set cycle timing (stp = 1, pw = 3, hold = 1) */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Undocumented (SAMSUNG specific?) commands set the chip into a special mode allowing a normally-hidden UID block to be read. */ NFC_CMD = 0x30; NFC_CMD = 0x65; /* Read command */ NFC_CMD = 0x00; /* Write row/column address */ for (i = 0; i < col_cycles; i++) NFC_SADDR = 0; for (i = 0; i < row_cycles; i++) NFC_SADDR = 0; /* End of read */ NFC_CMD = 0x30; /* Wait until complete */ while (!(NFC_CTRL & NFC_READY)) {}; /* Copy data to buffer (data repeats after 8 words) */ for (i = 0; i < 8; i++) { uid_buf[i] = NFC_WDATA; } /* Reset the chip back to normal mode */ NFC_CMD = 0xFF; nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_read_raw(int bank, int row, int column, int size, void* buf) { int i; /* Enable NFC bus clock */ BCLKCTR |= DEV_NAND; /* Set cycle timing (stp = 1, pw = 3, hold = 1) */ NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131; nand_chip_select(bank); /* Set write protect */ NAND_GPIO_CLEAR(WE_GPIO_BIT); /* Set 8-bit data width */ NFC_CTRL &= ~NFC_16BIT; /* Read command */ NFC_CMD = 0x00; /* Write column address */ for (i = 0; i < col_cycles; i++) { NFC_SADDR = column & 0xFF; column = column >> 8; } /* Write row address */ for (i = 0; i < row_cycles; i++) { NFC_SADDR = row & 0xFF; row = row >> 8; } /* End of read command */ NFC_CMD = 0x30; /* Wait until complete */ while (!(NFC_CTRL & NFC_READY)) {}; /* Read data into page buffer */ if (((unsigned int)buf & 3) || (size & 3)) { /* Use byte copy since either the buffer or size are not word-aligned */ /* TODO: Byte copy only where necessary (use words for mid-section) */ for (i = 0; i < size; i++) { ((unsigned char*)buf)[i] = NFC_SDATA; } } else { /* Use 4-byte copy as buffer and size are both word-aligned */ for (i = 0; i < (size/4); i++) { ((unsigned int*)buf)[i] = NFC_WDATA; } } nand_chip_select(-1); /* Disable NFC bus clock */ BCLKCTR &= ~DEV_NAND; } static void nand_get_chip_info(void) { unsigned char manuf_id; unsigned char id_buf[8]; /* Read chip id from bank 0 */ nand_read_id(0, id_buf); manuf_id = id_buf[0]; /* Identify the chip geometry */ struct nand_info* nand_data = nand_identify(id_buf); if (nand_data == NULL) { panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]); } page_size = nand_data->page_size; spare_size = nand_data->spare_size; pages_per_block = nand_data->pages_per_block; blocks_per_bank = nand_data->blocks_per_bank; col_cycles = nand_data->col_cycles; row_cycles = nand_data->row_cycles; pages_per_bank = blocks_per_bank * pages_per_block; segments_per_bank = blocks_per_bank / BLOCKS_PER_SEGMENT; bytes_per_segment = page_size * pages_per_block * BLOCKS_PER_SEGMENT; sectors_per_page = page_size / SECTOR_SIZE; sectors_per_segment = bytes_per_segment / SECTOR_SIZE; /* Establish how many banks are present */ nand_read_id(1, id_buf); if (id_buf[0] == manuf_id) { /* Bank 1 is populated, now check if banks 2/3 are valid */ nand_read_id(2, id_buf); if (id_buf[0] == manuf_id) { /* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */ unsigned int uid_buf0[8]; unsigned int uid_buf2[8]; nand_read_uid(0, uid_buf0); nand_read_uid(2, uid_buf2); if (memcmp(uid_buf0, uid_buf2, 32) == 0) { /* UIDs match, assume banks 2/3 are shadowing 0/1 */ total_banks = 2; } else { /* UIDs differ, assume banks 2/3 are valid */ total_banks = 4; } } else { /* Bank 2 returned differing id - assume 2/3 are junk */ total_banks = 2; } } else { /* Bank 1 returned differing id - assume it is junk */ total_banks = 1; } /* Sanity checks: 1. "BMP" tag at block 0, page 0, offset [always present] 2. On most D2s, +3 is 'M' and +4 is no. of banks. This is not present on some older players (formatted with early FW?) */ nand_read_raw(0, /* bank */ 0, /* page */ page_size, /* offset */ 8, id_buf); if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present"); if (id_buf[3] == 'M') { if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch"); } } static bool nand_read_sector_of_phys_page(int bank, int page, int sector, void* buf) { #ifndef USE_ECC_CORRECTION nand_read_raw(bank, page, sector * (SECTOR_SIZE+16), SECTOR_SIZE, buf); return true; #else /* Not yet implemented */ return false; #endif } static bool nand_read_sector_of_phys_segment(int bank, int phys_segment, int page_in_seg, int sector, void* buf) { int page_addr = phys_segment_to_page_addr(phys_segment, page_in_seg); return nand_read_sector_of_phys_page(bank, page_addr, sector, buf); } static bool nand_read_sector_of_logical_segment(int log_segment, int sector, void* buf) { int page_in_segment = sector / sectors_per_page; int sector_in_page = sector % sectors_per_page; int bank = lpt_lookup[log_segment].bank; int phys_segment = lpt_lookup[log_segment].phys_segment; /* Check if any of the write caches refer to this segment/page. If present we need to read the cached page instead. */ int cache_num = 0; bool found = false; while (!found && cache_num < write_caches_in_use) { if (write_caches[cache_num].log_segment == log_segment && write_caches[cache_num].page_map[page_in_segment] != -1) { found = true; bank = write_caches[cache_num].bank; phys_segment = write_caches[cache_num].phys_segment; page_in_segment = write_caches[cache_num].page_map[page_in_segment]; } else { cache_num++; } } return nand_read_sector_of_phys_segment(bank, phys_segment, page_in_segment, sector_in_page, buf); } /* Miscellaneous helper functions */ static inline char get_segment_type(char* spare_buf) { return spare_buf[OFF_SEGMENT_TYPE]; } static inline unsigned short get_log_segment_id(char* spare_buf) { return (spare_buf[OFF_LOG_SEG_HIBYTE] << 8) | spare_buf[OFF_LOG_SEG_LOBYTE]; } static inline unsigned short get_cached_page_id(char* spare_buf) { return (spare_buf[OFF_CACHE_PAGE_HIBYTE] << 8) | spare_buf[OFF_CACHE_PAGE_LOBYTE]; } #ifdef USE_TCC_LPT /* Reading the LPT from NAND is not yet fully understood. This code is therefore not enabled by default, as it gives much worse results than the bank-scanning approach currently used. The LPT is stored in a number of physical segments marked with type 0x12. These are spread non-contiguously across the NAND, and are not stored in sequential order. The LPT data is stored in Sector 0 of the first pages of each segment. Each 32-bit value in sequence represents the physical location of a logical segment. This is stored as (physical segment number * bank number). NOTE: The bank numbers stored appear to be in reverse order to that required by the nand_chip_select() function. The reason for this anomoly is unknown. */ static void read_lpt_block(int bank, int phys_segment) { int page = 1; /* table starts at page 1 of segment */ bool cont = true; struct lpt_entry* lpt_ptr = NULL; while (cont && page < pages_per_block) { int i = 0; unsigned int* int_buf = (int*)page_buf; nand_read_sector_of_phys_segment(bank, phys_segment, page, 0, /* only sector 0 is used */ page_buf); /* Find out which chunk of the LPT table this section contains. Do this by reading the logical segment number of entry 0 */ if (lpt_ptr == NULL) { int first_bank = int_buf[0] / segments_per_bank; int first_phys_segment = int_buf[0] % segments_per_bank; /* Reverse the stored bank number */ if (total_banks > 1) first_bank = (total_banks-1) - first_bank; unsigned char spare_buf[16]; nand_read_raw(first_bank, phys_segment_to_page_addr(first_phys_segment, 0), SECTOR_SIZE, /* offset */ 16, spare_buf); int first_log_segment = get_log_segment_id(spare_buf); lpt_ptr = &lpt_lookup[first_log_segment]; } while (cont && (i < SECTOR_SIZE/4)) { if (int_buf[i] != 0xFFFFFFFF) { int bank = int_buf[i] / segments_per_bank; int phys_segment = int_buf[i] % segments_per_bank; /* Reverse the stored bank number */ if (total_banks > 1) bank = (total_banks-1) - bank; lpt_ptr->bank = bank; lpt_ptr->phys_segment = phys_segment; lpt_ptr++; i++; } else cont = false; } page++; } } #endif /* USE_TCC_LPT */ static void read_write_cache_segment(int bank, int phys_segment) { int page; unsigned char spare_buf[16]; if (write_caches_in_use == MAX_WRITE_CACHES) panicf("Max NAND write caches reached"); write_caches[write_caches_in_use].bank = bank; write_caches[write_caches_in_use].phys_segment = phys_segment; /* Loop over each page in the phys segment (from page 1 onwards). Read spare for 1st sector, store location of page in array. */ for (page = 1; page < pages_per_block * BLOCKS_PER_SEGMENT; page++) { unsigned short cached_page; unsigned short log_segment; nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page), SECTOR_SIZE, /* offset to first sector's spare */ 16, spare_buf); cached_page = get_cached_page_id(spare_buf); log_segment = get_log_segment_id(spare_buf); if (cached_page != 0xFFFF) { write_caches[write_caches_in_use].log_segment = log_segment; write_caches[write_caches_in_use].page_map[cached_page] = page; } } write_caches_in_use++; } int nand_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { #ifdef HAVE_MULTIVOLUME (void)drive; /* unused for now */ #endif mutex_lock(&ata_mtx); while (incount > 0) { int done = 0; int segment = start / sectors_per_segment; int secmod = start % sectors_per_segment; while (incount > 0 && secmod < sectors_per_segment) { if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf)) { mutex_unlock(&ata_mtx); return -1; } inbuf += SECTOR_SIZE; incount--; secmod++; done++; } if (done < 0) { mutex_unlock(&ata_mtx); return -1; } start += done; } mutex_unlock(&ata_mtx); return 0; } int nand_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* outbuf) { #ifdef HAVE_MULTIVOLUME (void)drive; /* unused for now */ #endif /* TODO: Learn more about TNFTL and implement this one day... */ (void)start; (void)count; (void)outbuf; return -1; } #ifdef STORAGE_GET_INFO void nand_get_info(struct storage_info *info) { /* firmware version */ info->revision="0.00"; info->vendor="Rockbox"; info->product="Internal Storage"; /* blocks count */ info->num_sectors = (pages_per_block * blocks_per_bank / SECTOR_SIZE) * page_size * total_banks; info->sector_size=SECTOR_SIZE; } #endif int nand_init(void) { int i, bank, phys_segment; unsigned char spare_buf[16]; if (initialized) return 0; #ifdef CPU_TCC77X CSCFG2 = 0x318a8010; GPIOC_FUNC &= ~(CS_GPIO_BIT | WE_GPIO_BIT); GPIOC_FUNC |= 0x1; #endif /* Set GPIO direction for chip select & write protect */ NAND_GPIO_OUT_EN(CS_GPIO_BIT | WE_GPIO_BIT); /* Get chip characteristics and number of banks */ nand_get_chip_info(); for (i = 0; i < MAX_SEGMENTS; i++) { lpt_lookup[i].bank = -1; lpt_lookup[i].phys_segment = -1; } write_caches_in_use = 0; for (i = 0; i < MAX_WRITE_CACHES; i++) { int page; write_caches[i].log_segment = -1; write_caches[i].bank = -1; write_caches[i].phys_segment = -1; for (page = 0; page < MAX_PAGES_PER_BLOCK * BLOCKS_PER_SEGMENT; page++) { write_caches[i].page_map[page] = -1; } } /* Scan banks to build up block translation table */ for (bank = 0; bank < total_banks; bank++) { for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++) { /* Read spare bytes from first sector of each segment */ nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0), SECTOR_SIZE, /* offset */ 16, spare_buf); switch (get_segment_type(spare_buf)) { #ifdef USE_TCC_LPT case SEGMENT_MAIN_LPT: { /* Log->Phys Translation table (for Main data area) */ read_lpt_block(bank, phys_segment); break; } #else case SEGMENT_MAIN_DATA2: { /* Main data area segment */ unsigned short log_segment = get_log_segment_id(spare_buf); if (log_segment < MAX_SEGMENTS) { lpt_lookup[log_segment].bank = bank; lpt_lookup[log_segment].phys_segment = phys_segment; } break; } #endif case SEGMENT_MAIN_CACHE: { /* Recently-written page data (for Main data area) */ read_write_cache_segment(bank, phys_segment); break; } } } } #ifndef USE_TCC_LPT /* Scan banks a second time as 0x13 segments appear to override 0x17 */ for (bank = 0; bank < total_banks; bank++) { for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++) { /* Read spare bytes from first sector of each segment */ nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0), SECTOR_SIZE, /* offset */ 16, spare_buf); switch (get_segment_type(spare_buf)) /* block type */ { case SEGMENT_MAIN_DATA1: { /* Main data area segment */ unsigned short log_segment = get_log_segment_id(spare_buf); if (log_segment < MAX_SEGMENTS) { /* 0x13 seems to override 0x17, so store in our LPT */ lpt_lookup[log_segment].bank = bank; lpt_lookup[log_segment].phys_segment = phys_segment; } break; } } } } #endif initialized = true; return 0; } long nand_last_disk_activity(void) { return last_disk_activity; } void nand_sleep(void) { } void nand_spin(void) { } void nand_spindown(int seconds) { (void)seconds; }