rockbox/utils/hwstub/include/hwstub_net.hpp

335 lines
14 KiB
C++
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2016 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef __HWSTUB_NET_HPP__
#define __HWSTUB_NET_HPP__
#include "hwstub.hpp"
#include <map>
#include <thread>
#include <future>
#include <list>
namespace hwstub {
namespace net {
/** Net context
*
* A socket context provides access to another context through a network. This
* is particularly useful to have another program create a USB context and provide
* access to it via some network. The two most useful types of network are TCP
* and Unix domains */
class context : public hwstub::context
{
friend class device;
friend class handle;
protected:
context();
public:
virtual ~context();
/** Create a socket context with an existing file descriptor. Note that the
* file descriptor will be closed when the context will be destroyed. */
static std::shared_ptr<context> create_socket(int socket_fd);
/** Create a TCP socket context with a domain name and a port. If port is empty,
* a default port is used. */
static std::shared_ptr<context> create_tcp(const std::string& domain,
const std::string& port, std::string *error = nullptr);
/** Create a UNIX socket context with a file system path (see man for details) */
static std::shared_ptr<context> create_unix(const std::string& path,
std::string *error = nullptr);
/** Create a UNIX socket context with an abstract name (see man for details) */
static std::shared_ptr<context> create_unix_abstract(const std::string& path,
std::string *error = nullptr);
/** Useful functions for network byte order conversion */
uint32_t to_net_order(uint32_t u);
uint32_t from_net_order(uint32_t u);
/** Default parameters */
static std::string default_unix_path();
static std::string default_tcp_domain();
static std::string default_tcp_port();
protected:
/** Send a message to the server. Context will always serialize calls to send()
* so there is no need to worry about concurrency issues. */
virtual error send(void *buffer, size_t& sz) = 0;
/** Receive a message from the server, sz is updated with the received size.
* Context will always serialize calls to recv() so there is no need to
* worry about concurrency issues. */
virtual error recv(void *buffer, size_t& sz) = 0;
/** Perform a standard command: send a header with optional data and wait for
* an answer. In case of an underlying network error, the corresponding error
* code will be reported. If the server responds correctly, the argument array
* is overwritten with the servers's response. If the requests has been NACK'ed
* the error code will be parsed and returned as a standard error code (see details below)
* (note that the original error code can still be found in args[0]). No data
* is transmitted in case of NACK.
* If the server ACKs the request, this function will also perform reception of
* the data. In recv_data is not NULL, the receive data will be put there and the
* size will be written in in_size. There are two cases: either *recv_data is NULL
* and the function will allocate the memory based on much data is sent by the server.
* Or *recv_data is not NULL, in which case the function NOT allocate memory
* and put the data at *recv_data; in this case, *recv_size should be the set
* to the size of the buffer and will be updated to the received size. If the
* server sents more data than the buffer size, OVERFLOW will be returned.
* If no data was received but recv_data is not null, *recv_size will be set to
* zero. It is the caller's responsability to delete *recv_data. Note that if
* server sends data but recv_data is null, the data will still be received and
* thrown away.
* This function takes care of network byte order for cmd and arguments
* but not for data. */
error send_cmd(uint32_t cmd, uint32_t args[HWSTUB_NET_ARGS], uint8_t *send_data,
size_t send_size, uint8_t **recv_data, size_t *recv_size);
/** Ask the context to stop any communication with the server and do a clean
* shutdown if possible. This is a blocking call. When this function returns,
* there will no more calls to the underlying communication functions.
* This function should be called in the destructor to prevent the context from
* calling children functions after the object has been deconstructed. */
void stop_context();
/** Perform delayed init (aka HELLO stage), do nothing is not needed */
void delayed_init();
/* NOTE ctx_dev_t = uint32_t (device id) */
uint32_t from_ctx_dev(ctx_dev_t dev);
ctx_dev_t to_ctx_dev(uint32_t dev);
virtual error fetch_device_list(std::vector<ctx_dev_t>& list, void*& ptr);
virtual void destroy_device_list(void *ptr);
virtual error create_device(ctx_dev_t dev, std::shared_ptr<hwstub::device>& hwdev);
virtual bool match_device(ctx_dev_t dev, std::shared_ptr<hwstub::device> hwdev);
enum class state
{
HELLO, /* client is initialising, server has not been contacted yet */
IDLE, /* not doing anything */
DEAD, /* died on unrecoverable error */
};
state m_state; /* client state */
error m_error; /* error state for DEAD */
};
/** Socket based net context
*
* Don't use this class directly, use context::create_* calls. This class
* provides send()/recv() for any socket based network. */
class socket_context : public context
{
friend class context;
protected:
socket_context(int socket_fd);
public:
virtual ~socket_context();
/** set operation timeout */
void set_timeout(std::chrono::milliseconds ms);
protected:
virtual error send(void *buffer, size_t& sz);
virtual error recv(void *buffer, size_t& sz);
int m_socketfd; /* socket file descriptor */
};
/** Net device
*
* Device accessed through a network */
class device : public hwstub::device
{
friend class context; /* for ctor */
protected:
device(std::shared_ptr<hwstub::context> ctx, uint32_t devid);
public:
virtual ~device();
protected:
/** Return device ID */
uint32_t device_id();
virtual error open_dev(std::shared_ptr<hwstub::handle>& handle);
virtual bool has_multiple_open() const;
int32_t m_device_id; /* device id */
};
/** Net handle
*
* Handle used to talk to a distant device. */
class handle : public hwstub::handle
{
friend class device;
protected:
handle(std::shared_ptr<hwstub::device> dev, uint32_t hid);
public:
virtual ~handle();
protected:
virtual error read_dev(uint32_t addr, void *buf, size_t& sz, bool atomic);
virtual error write_dev(uint32_t addr, const void *buf, size_t& sz, bool atomic);
virtual error get_dev_desc(uint16_t desc, void *buf, size_t& buf_sz);
virtual error get_dev_log(void *buf, size_t& buf_sz);
virtual error exec_dev(uint32_t addr, uint16_t flags);
virtual error status() const;
virtual size_t get_buffer_size();
uint32_t m_handle_id; /* handle id */
};
/** Net server
*
* A server that forwards requests from net clients to a context */
class server
{
protected:
server(std::shared_ptr<hwstub::context> contex);
public:
virtual ~server();
/** Create a socket server with an existing file descriptor. Note that the
* file descriptor will be closed when the context will be destroyed. */
static std::shared_ptr<server> create_socket(std::shared_ptr<hwstub::context> contex,
int socket_fd);
/** Create a TCP socket server with a domain name and a port. If port is empty,
* a default port is used. */
static std::shared_ptr<server> create_tcp(std::shared_ptr<hwstub::context> contex,
const std::string& domain, const std::string& port, std::string *error = nullptr);
/** Create a UNIX socket server with a file system path (see man for details) */
static std::shared_ptr<server> create_unix(std::shared_ptr<hwstub::context> contex,
const std::string& path, std::string *error = nullptr);
/** Create a UNIX socket server with an abstract name (see man for details) */
static std::shared_ptr<server> create_unix_abstract(
std::shared_ptr<hwstub::context> contex, const std::string& path,
std::string *error = nullptr);
/** Useful functions for network byte order conversion */
uint32_t to_net_order(uint32_t u);
uint32_t from_net_order(uint32_t u);
/** Set/clear debug output for this context */
void set_debug(std::ostream& os);
inline void clear_debug() { set_debug(cnull); }
/** Get debug output for this context */
std::ostream& debug();
protected:
struct client_state;
/** Opaque client type */
typedef void* srv_client_t;
/** The client discovery implementation must call this function when a new
* client wants to talk to the server. If the server is unhappy with the
* request, it will immediately call terminate_client() */
void client_arrived(srv_client_t client);
/** The client discovery implementation can notify asychronously about a client
* that left. Note that the implementation does not need to provide a mechanism,
* but should in this case return CLIENT_DISCONNECTED when the server performs
* a send() or recv() on a disconnected client. The server will always call
* after receiving client_left() but since this call is asychronous, the
* implementation must be prepared to deal with extra send()/recv() in the mean
* time. */
void client_left(srv_client_t client);
/** The client discovery implementation can ask the server to stop all client
* threads. This is a blocking call. When this function returns, there will no
* more calls to the underlying communication functions. Note that the server
* will normally call terminate_client() on each active client at this point.
* This function should be called in the destructor to prevent the server from
* calling children functions after the object has been deconstructed. */
void stop_server();
/** Notify that the connection to a client is now finished. After this call, no
* more send()/recv() will be made to the client and the associated data will
* be freed. After this call, the implementation is not allowed to call client_left()
* for this client (assuming it did not previously). The implementation should close
* the communication channel at this point and free any associated data. */
virtual void terminate_client(srv_client_t client) = 0;
/** Send a message to the client. Server will always serialize calls to send()
* for a given client so there is no need to worry about concurrency issues. */
virtual error send(srv_client_t client, void *buffer, size_t& sz) = 0;
/** Receive a message from the client, sz is updated with the received size.
* Server will always serialize calls to recv() for a given client so there
* is no need to worry about concurrency issues. See comment about client_left(). */
virtual error recv(srv_client_t client, void *buffer, size_t& sz) = 0;
/** handle command: cmd and arguments are in host order, the function should
* either return an error (command will be NACKed) or must fill the arguments
* and data for the answer. Note that the data is still in network byte order.
* If the funtion wants to send data back, it must set *send_data to a valid
* pointer, this pointer will be freed after the data is sent back. */
error handle_cmd(client_state *state, uint32_t cmd, uint32_t args[HWSTUB_NET_ARGS],
uint8_t *recv_data, size_t recv_size, uint8_t*& send_data, size_t& send_size);
/* complete state of a client */
struct client_state
{
client_state(srv_client_t cl, std::future<void>&& f);
srv_client_t client; /* client */
std::future<void> future; /* thread (see .cpp for explaination) */
volatile bool exit; /* exit flag */
uint32_t next_dev_id; /* next device ID */
uint32_t next_handle_id; /* next handle ID */
/* dev ID <-> hwstub dev map */
std::map<uint32_t, std::shared_ptr<hwstub::device>> dev_map;
/* handle ID -> hwstub handle map */
std::map<uint32_t, std::shared_ptr<hwstub::handle>> handle_map;
};
/** Client thread */
static void client_thread2(server *s, client_state *cs);
void client_thread(client_state *cs);
std::shared_ptr<hwstub::context> m_context; /* context to perform operation */
std::list<client_state> m_client; /* client list */
std::recursive_mutex m_mutex; /* server mutex */
std::ostream *m_debug; /* debug stream */
};
/** Socket based net server
*
*/
class socket_server : public server
{
protected:
socket_server(std::shared_ptr<hwstub::context> contex, int socket_fd);
public:
virtual ~socket_server();
/** create a server */
static std::shared_ptr<server> create(std::shared_ptr<hwstub::context> contex,
int socket_fd);
/** set operation timeout */
void set_timeout(std::chrono::milliseconds ms);
protected:
virtual void terminate_client(srv_client_t client);
virtual error send(srv_client_t client, void *buffer, size_t& sz);
virtual error recv(srv_client_t, void *buffer, size_t& sz);
/* NOTE srv_client_t = int (client file descriptor) */
int from_srv_client(srv_client_t cli);
srv_client_t to_srv_client(int fd);
/** Discovery thread */
static void discovery_thread1(socket_server *s);
void discovery_thread();
static const int LISTEN_QUEUE_SIZE = 5;
struct timeval m_timeout; /* operations timeout */
int m_socketfd; /* socket file descriptor */
std::thread m_discovery_thread; /* thread handling client discovery */
volatile bool m_discovery_exit; /* exit flag */
};
} // namespace net
} // namespace hwstub
#endif /* __HWSTUB_NET_HPP__ */