rockbox/apps/codecs/libfaad/filtbank.c

480 lines
17 KiB
C
Raw Normal View History

/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id$
**/
#include "common.h"
#include "structs.h"
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32_WCE
#define assert(x)
#else
#include <assert.h>
#endif
#include "filtbank.h"
#include "decoder.h"
#include "syntax.h"
#include "kbd_win.h"
#include "sine_win.h"
/*Windowing functions borrowed from libwmai*/
#ifdef CPU_ARM
static inline
void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len)
{
/* Block sizes are always power of two */
asm volatile (
"0:"
"ldmia %[d]!, {r0, r1};"
"ldmia %[w]!, {r4, r5};"
/* consume the first data and window value so we can use those
* registers again */
"smull r8, r9, r0, r4;"
"ldmia %[src2]!, {r0, r4};"
"add r0, r0, r9, lsl #1;" /* *dst=*dst+(r9<<1)*/
"smull r8, r9, r1, r5;"
"add r1, r4, r9, lsl #1;"
"stmia %[dst]!, {r0, r1};"
"subs %[n], %[n], #2;"
"bne 0b;"
: [d] "+r" (src0), [w] "+r" (src1), [src2] "+r" (src2), [dst] "+r" (dst), [n] "+r" (len)
:
: "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
}
static inline
void vector_fmul_reverse(real_t *dst, const real_t *src0, const real_t *src1,
int len)
{
/* Block sizes are always power of two */
asm volatile (
"add %[s1], %[s1], %[n], lsl #2;"
"0:"
"ldmia %[s0]!, {r0, r1};"
"ldmdb %[s1]!, {r4, r5};"
"smull r8, r9, r0, r5;"
"mov r0, r9, lsl #1;"
"smull r8, r9, r1, r4;"
"mov r1, r9, lsl #1;"
"stmia %[dst]!, {r0, r1};"
"subs %[n], %[n], #2;"
"bne 0b;"
: [s0] "+r" (src0), [s1] "+r" (src1), [dst] "+r" (dst), [n] "+r" (len)
:
: "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc");
}
#elif defined(CPU_COLDFIRE)
static inline
void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len)
{
/* Block sizes are always power of two. Smallest block is always way bigger
* than four too.*/
asm volatile (
"0:"
"movem.l (%[src0]), %%d0-%%d3;"
"movem.l (%[src1]), %%d4-%%d5/%%a0-%%a1;"
"mac.l %%d0, %%d4, %%acc0;"
"mac.l %%d1, %%d5, %%acc1;"
"mac.l %%d2, %%a0, %%acc2;"
"mac.l %%d3, %%a1, %%acc3;"
"lea.l (16, %[src0]), %[src0];"
"lea.l (16, %[src1]), %[src1];"
"movclr.l %%acc0, %%d0;"
"movclr.l %%acc1, %%d1;"
"movclr.l %%acc2, %%d2;"
"movclr.l %%acc3, %%d3;"
"movem.l (%[src2]), %%d4-%%d5/%%a0-%%a1;"
"lea.l (16, %[src2]), %[src2];"
"add.l %%d4, %%d0;"
"add.l %%d5, %%d1;"
"add.l %%a0, %%d2;"
"add.l %%a1, %%d3;"
"movem.l %%d0-%%d3, (%[dst]);"
"lea.l (16, %[dst]), %[dst];"
"subq.l #4, %[n];"
"jne 0b;"
: [src0] "+a" (src0), [src1] "+a" (src1), [src2] "+a" (src2), [dst] "+a" (dst), [n] "+d" (len)
:
: "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
}
static inline
void vector_fmul_reverse(real_t *dst, const real_t *src0, const real_t *src1,
int len)
{
/* Block sizes are always power of two. Smallest block is always way bigger
* than four too.*/
asm volatile (
"lea.l (-16, %[s1], %[n]*4), %[s1];"
"0:"
"movem.l (%[s0]), %%d0-%%d3;"
"movem.l (%[s1]), %%d4-%%d5/%%a0-%%a1;"
"mac.l %%d0, %%a1, %%acc0;"
"mac.l %%d1, %%a0, %%acc1;"
"mac.l %%d2, %%d5, %%acc2;"
"mac.l %%d3, %%d4, %%acc3;"
"lea.l (16, %[s0]), %[s0];"
"lea.l (-16, %[s1]), %[s1];"
"movclr.l %%acc0, %%d0;"
"movclr.l %%acc1, %%d1;"
"movclr.l %%acc2, %%d2;"
"movclr.l %%acc3, %%d3;"
"movem.l %%d0-%%d3, (%[dst]);"
"lea.l (16, %[dst]), %[dst];"
"subq.l #4, %[n];"
"jne 0b;"
: [s0] "+a" (src0), [s1] "+a" (src1), [dst] "+a" (dst), [n] "+d" (len)
: : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc");
}
#else
static inline void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len){
int i;
for(i=0; i<len; i++)
dst[i] = MUL_F(src0[i], src1[i]) + src2[i];
}
static inline void vector_fmul_reverse(real_t *dst, const real_t *src0, const real_t *src1, int len){
int i;
src1 += len-1;
for(i=0; i<len; i++)
dst[i] = MUL_F(src0[i], src1[-i]);
}
#endif
#ifdef LTP_DEC
static INLINE void mdct(fb_info *fb, real_t *in_data, real_t *out_data, uint16_t len)
{
mdct_info *mdct = NULL;
switch (len)
{
case 2048:
case 1920:
mdct = fb->mdct2048;
break;
case 256:
case 240:
mdct = fb->mdct256;
break;
#ifdef LD_DEC
case 1024:
case 960:
mdct = fb->mdct1024;
break;
#endif
}
faad_mdct(mdct, in_data, out_data);
}
#endif
ALIGN real_t transf_buf[2*1024] IBSS_ATTR;
void ifilter_bank(uint8_t window_sequence, uint8_t window_shape,
uint8_t window_shape_prev, real_t *freq_in,
real_t *time_out, real_t *overlap,
uint8_t object_type, uint16_t frame_len)
{
int32_t i, idx0, idx1;
real_t win0, win1, win2;
const real_t *window_long = NULL;
const real_t *window_long_prev = NULL;
const real_t *window_short = NULL;
const real_t *window_short_prev = NULL;
int32_t nlong = frame_len;
int32_t nshort = frame_len/8;
int32_t nflat_ls = (nlong-nshort)/2;
#ifdef PROFILE
int64_t count = faad_get_ts();
#endif
memset(transf_buf,0,sizeof(transf_buf));
/* select windows of current frame and previous frame (Sine or KBD) */
#ifdef LD_DEC
if (object_type == LD)
{
window_long = fb->ld_window[window_shape];
window_long_prev = fb->ld_window[window_shape_prev];
} else {
#else
(void) object_type;
#endif
/* AAC uses two different window shapes depending on spectal features */
if (window_shape == 0) {
window_long = sine_long_1024;
window_short = sine_short_128;
} else {
window_long = kbd_long_1024;
window_short = kbd_short_128;
}
if (window_shape_prev == 0) {
window_long_prev = sine_long_1024;
window_short_prev = sine_short_128;
} else {
window_long_prev = kbd_long_1024;
window_short_prev = kbd_short_128;
}
#ifdef LD_DEC
}
#endif
#if 0
for (i = 0; i < 1024; i++)
{
printf("%d\n", freq_in[i]);
}
#endif
#if 0
printf("%d %d\n", window_sequence, window_shape);
#endif
switch (window_sequence)
{
case ONLY_LONG_SEQUENCE:
/* perform iMDCT */
ff_imdct_calc(11, transf_buf, freq_in);
/* add second half output of previous frame to windowed output of current frame */
vector_fmul_add_add(time_out, transf_buf, window_long_prev, overlap, nlong);
/* window the second half and save as overlap for next frame */
vector_fmul_reverse(overlap, transf_buf+nlong, window_long, nlong);
break;
case LONG_START_SEQUENCE:
/* perform iMDCT */
ff_imdct_calc(11, transf_buf, freq_in);
/* add second half output of previous frame to windowed output of current frame */
vector_fmul_add_add(time_out, transf_buf, window_long_prev, overlap, nlong);
/* window the second half and save as overlap for next frame */
/* construct second half window using padding with 1's and 0's */
memcpy(overlap, transf_buf+nlong, nflat_ls*sizeof(real_t));
vector_fmul_reverse(overlap+nflat_ls, transf_buf+nlong+nflat_ls, window_short, nshort);
memset(overlap+nflat_ls+nshort, 0, nflat_ls*sizeof(real_t));
break;
case EIGHT_SHORT_SEQUENCE:
/* this could be assemblerized too, but this case is extremely uncommon */
/* perform iMDCT for each short block */
idx0 = 0; ff_imdct_calc(8, transf_buf , freq_in );
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0);
/* Add second half output of previous frame to windowed output of current
* frame */
/* Step 1: copy */
memcpy(time_out, overlap, nflat_ls*sizeof(real_t));
/* Step 2: First window half, first half of nshort */
for (i = 0; i < nshort/2; i++) {
win0 = window_short[nshort-1-i];
win1 = window_short[i];
win2 = window_short_prev[i];
idx0 = nflat_ls + i;
idx1 = i;
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1], win2); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1);
}
/* Step 3: First window half, second half of nshort */
for (; i < nshort; i++) {
win0 = window_short[nshort-1-i];
win1 = window_short[i];
idx0 = nflat_ls + i;
idx1 = i;
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1);
}
/* Window the second half and save as overlap for next frame */
/* Step 1: Second window half, first half of nshort */
for (i = 0; i < nshort/2; i++) {
win0 = window_short[nshort-1-i];
win1 = window_short[i];
idx0 = nflat_ls + 5*nshort + i - nlong;
idx1 = nshort*10 + i;
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0);
}
/* Step 2: Second window half, second half of nshort */
for (; i < nshort; i++) {
win0 = window_short[nshort-1-i];
win1 = window_short[i];
idx0 = nflat_ls + 4*nshort + i - nlong;
idx1 = nshort*8 + i;
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1);
overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0);
}
/* Step 3: Set to zero */
memset(overlap+nflat_ls+nshort, 0, nflat_ls*sizeof(real_t));
break;
case LONG_STOP_SEQUENCE:
/* perform iMDCT */
ff_imdct_calc(11, transf_buf, freq_in);
/* add second half output of previous frame to windowed output of current frame */
/* construct first half window using padding with 1's and 0's */
memcpy(time_out, overlap, nflat_ls*sizeof(real_t));
vector_fmul_add_add(time_out+nflat_ls, transf_buf+nflat_ls, window_short_prev, overlap+nflat_ls, nshort);
/* nflat_ls can be divided by 2. */
idx0 = nflat_ls + nshort;
for (i = 0; i < nflat_ls; i+=2) {
time_out[idx0] = overlap[idx0] + transf_buf[idx0]; idx0++;
time_out[idx0] = overlap[idx0] + transf_buf[idx0]; idx0++;
}
/* window the second half and save as overlap for next frame */
vector_fmul_reverse(overlap, transf_buf+nlong, window_long, nlong);
break;
}
#if 0
for (i = 0; i < 1024; i++)
{
printf("%d\n", time_out[i]);
//printf("0x%.8X\n", time_out[i]);
}
#endif
#ifdef PROFILE
count = faad_get_ts() - count;
fb->cycles += count;
#endif
}
#ifdef LTP_DEC
ALIGN real_t windowed_buf[2*1024] = {0};
/* only works for LTP -> no overlapping, no short blocks */
void filter_bank_ltp(fb_info *fb, uint8_t window_sequence, uint8_t window_shape,
uint8_t window_shape_prev, real_t *in_data, real_t *out_mdct,
uint8_t object_type, uint16_t frame_len)
{
int16_t i;
const real_t *window_long = NULL;
const real_t *window_long_prev = NULL;
const real_t *window_short = NULL;
const real_t *window_short_prev = NULL;
uint16_t nlong = frame_len;
uint16_t nshort = frame_len/8;
uint16_t nflat_ls = (nlong-nshort)/2;
//assert(window_sequence != EIGHT_SHORT_SEQUENCE);
memset(windowed_buf,0,sizeof(windowed_buf));
#ifdef LD_DEC
if (object_type == LD)
{
window_long = fb->ld_window[window_shape];
window_long_prev = fb->ld_window[window_shape_prev];
} else {
#else
(void) object_type;
#endif
window_long = fb->long_window[window_shape];
window_long_prev = fb->long_window[window_shape_prev];
window_short = fb->short_window[window_shape];
window_short_prev = fb->short_window[window_shape_prev];
#ifdef LD_DEC
}
#endif
switch(window_sequence)
{
case ONLY_LONG_SEQUENCE:
for (i = nlong-1; i >= 0; i--)
{
windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]);
windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]);
}
mdct(fb, windowed_buf, out_mdct, 2*nlong);
break;
case LONG_START_SEQUENCE:
for (i = 0; i < nlong; i++)
windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]);
for (i = 0; i < nflat_ls; i++)
windowed_buf[i+nlong] = in_data[i+nlong];
for (i = 0; i < nshort; i++)
windowed_buf[i+nlong+nflat_ls] = MUL_F(in_data[i+nlong+nflat_ls], window_short[nshort-1-i]);
for (i = 0; i < nflat_ls; i++)
windowed_buf[i+nlong+nflat_ls+nshort] = 0;
mdct(fb, windowed_buf, out_mdct, 2*nlong);
break;
case LONG_STOP_SEQUENCE:
for (i = 0; i < nflat_ls; i++)
windowed_buf[i] = 0;
for (i = 0; i < nshort; i++)
windowed_buf[i+nflat_ls] = MUL_F(in_data[i+nflat_ls], window_short_prev[i]);
for (i = 0; i < nflat_ls; i++)
windowed_buf[i+nflat_ls+nshort] = in_data[i+nflat_ls+nshort];
for (i = 0; i < nlong; i++)
windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]);
mdct(fb, windowed_buf, out_mdct, 2*nlong);
break;
}
}
#endif