rockbox/firmware/drivers/ata_mmc.c

1171 lines
32 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Jens Arnold
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdbool.h>
#include "ata.h"
#include "ata_mmc.h"
#include "kernel.h"
#include "thread.h"
#include "led.h"
#include "sh7034.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "usb.h"
#include "power.h"
#include "string.h"
#include "hwcompat.h"
#include "adc.h"
#include "bitswap.h"
#include "disk.h" /* for mount/unmount */
#define SECTOR_SIZE 512
#define MAX_BLOCK_SIZE 2048
/* Command definitions */
#define CMD_GO_IDLE_STATE 0x40 /* R1 */
#define CMD_SEND_OP_COND 0x41 /* R1 */
#define CMD_SEND_CSD 0x49 /* R1 */
#define CMD_SEND_CID 0x4a /* R1 */
#define CMD_STOP_TRANSMISSION 0x4c /* R1 */
#define CMD_SEND_STATUS 0x4d /* R2 */
#define CMD_SET_BLOCKLEN 0x50 /* R1 */
#define CMD_READ_SINGLE_BLOCK 0x51 /* R1 */
#define CMD_READ_MULTIPLE_BLOCK 0x52 /* R1 */
#define CMD_WRITE_BLOCK 0x58 /* R1b */
#define CMD_WRITE_MULTIPLE_BLOCK 0x59 /* R1b */
#define CMD_READ_OCR 0x7a /* R3 */
/* Response formats:
R1 = single byte, msb=0, various error flags
R1b = R1 + busy token(s)
R2 = 2 bytes (1st byte identical to R1), additional flags
R3 = 5 bytes (R1 + OCR register)
*/
#define R1_PARAMETER_ERR 0x40
#define R1_ADDRESS_ERR 0x20
#define R1_ERASE_SEQ_ERR 0x10
#define R1_COM_CRC_ERR 0x08
#define R1_ILLEGAL_CMD 0x04
#define R1_ERASE_RESET 0x02
#define R1_IN_IDLE_STATE 0x01
#define R2_OUT_OF_RANGE 0x80
#define R2_ERASE_PARAM 0x40
#define R2_WP_VIOLATION 0x20
#define R2_CARD_ECC_FAIL 0x10
#define R2_CC_ERROR 0x08
#define R2_ERROR 0x04
#define R2_ERASE_SKIP 0x02
#define R2_CARD_LOCKED 0x01
/* Data start tokens */
#define DT_START_BLOCK 0xfe
#define DT_START_WRITE_MULTIPLE 0xfc
#define DT_STOP_TRAN 0xfd
/* for compatibility */
bool old_recorder = false; /* FIXME: get rid of this cross-dependency */
int ata_spinup_time = 0;
long last_disk_activity = -1;
/* private variables */
static struct mutex mmc_mutex;
#ifdef HAVE_HOTSWAP
static long mmc_stack[(DEFAULT_STACK_SIZE + 0x800)/sizeof(long)];
static const char mmc_thread_name[] = "mmc";
static struct event_queue mmc_queue;
#endif
static bool initialized = false;
static bool new_mmc_circuit;
static bool delayed_write = false;
static unsigned char delayed_sector[SECTOR_SIZE];
static int delayed_sector_num;
static enum {
SER_POLL_WRITE,
SER_POLL_READ,
SER_DISABLED
} serial_mode;
static const unsigned char dummy[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
struct block_cache_entry {
bool inuse;
#ifdef HAVE_MULTIVOLUME
int drive;
#endif
unsigned long blocknum;
unsigned char data[MAX_BLOCK_SIZE+4];
/* include start token, dummy crc, and an extra byte at the start
* to keep the data word aligned. */
};
/* 2 buffers used alternatively for writing, and also for reading
* and sub-block writing if block size > sector size */
#define NUMCACHES 2
static struct block_cache_entry block_cache[NUMCACHES];
static int current_cache = 0;
/* globals for background copy and swap */
static const unsigned char *bcs_src = NULL;
static unsigned char *bcs_dest = NULL;
static unsigned long bcs_len = 0;
static tCardInfo card_info[2];
#ifndef HAVE_MULTIVOLUME
static int current_card = 0;
#endif
static bool last_mmc_status = false;
static int countdown; /* for mmc switch debouncing */
static bool usb_activity; /* monitoring the USB bridge */
static long last_usb_activity;
/* private function declarations */
static int select_card(int card_no);
static void deselect_card(void);
static void setup_sci1(int bitrate_register);
static void set_sci1_poll_read(void);
static void write_transfer(const unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static void read_transfer(unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static unsigned char poll_byte(long timeout);
static unsigned char poll_busy(long timeout);
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response);
static int receive_cxd(unsigned char *buf);
static int initialize_card(int card_no);
static void bg_copy_swap(void);
static int receive_block(unsigned char *inbuf, int size, long timeout);
static int send_block(int size, unsigned char start_token, long timeout);
static int cache_block(IF_MV2(int drive,) unsigned long blocknum,
int size, long timeout);
static void mmc_tick(void);
/* implementation */
void mmc_select_clock(int card_no)
{
/* set clock gate for external card / reset for internal card if the
* MMC clock polarity bit is 0, vice versa if it is 1 */
if ((card_no != 0) ^ new_mmc_circuit)
or_b(0x10, &PADRH); /* set clock gate PA12 */
else
and_b(~0x10, &PADRH); /* clear clock gate PA12 */
}
static int select_card(int card_no)
{
mmc_select_clock(card_no);
last_disk_activity = current_tick;
if (!card_info[card_no].initialized)
{
setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */
write_transfer(dummy, 10); /* allow the card to synchronize */
while (!(SSR1 & SCI_TEND));
}
if (card_no == 0) /* internal */
and_b(~0x04, &PADRH); /* assert CS */
else /* external */
and_b(~0x02, &PADRH); /* assert CS */
if (card_info[card_no].initialized)
{
setup_sci1(card_info[card_no].bitrate_register);
return 0;
}
else
{
return initialize_card(card_no);
}
}
static void deselect_card(void)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
or_b(0x06, &PADRH); /* deassert CS (both cards) */
last_disk_activity = current_tick;
}
static void setup_sci1(int bitrate_register)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial port */
SMR1 = SYNC_MODE; /* no prescale */
BRR1 = bitrate_register;
SSR1 = 0;
SCR1 = SCI_TE; /* enable transmitter */
serial_mode = SER_POLL_WRITE;
}
static void set_sci1_poll_read(void)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable transmitter (& receiver) */
SCR1 = (SCI_TE|SCI_RE); /* re-enable transmitter & receiver */
while (!(SSR1 & SCI_TEND)); /* wait for SCI init completion (!) */
serial_mode = SER_POLL_READ;
TDR1 = 0xFF; /* send do-nothing while reading */
}
static void write_transfer(const unsigned char *buf, int len)
{
const unsigned char *buf_end = buf + len;
register unsigned char data;
if (serial_mode != SER_POLL_WRITE)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable transmitter & receiver */
SSR1 = 0; /* clear all flags */
SCR1 = SCI_TE; /* enable transmitter only */
serial_mode = SER_POLL_WRITE;
}
while (buf < buf_end)
{
data = fliptable[(signed char)(*buf++)]; /* bitswap */
while (!(SSR1 & SCI_TDRE)); /* wait for end of transfer */
TDR1 = data; /* write byte */
SSR1 = 0; /* start transmitting */
}
}
/* don't call this with len == 0 */
static void read_transfer(unsigned char *buf, int len)
{
unsigned char *buf_end = buf + len - 1;
register signed char data;
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
SSR1 = 0; /* start receiving first byte */
while (buf < buf_end)
{
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
SSR1 = 0; /* start receiving */
*buf++ = fliptable[data]; /* bitswap */
}
while (!(SSR1 & SCI_RDRF)); /* wait for last byte */
*buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */
}
/* returns 0xFF on timeout, timeout is in bytes */
static unsigned char poll_byte(long timeout)
{
long i;
unsigned char data = 0; /* stop the compiler complaining */
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
} while ((data == 0xFF) && (++i < timeout));
return fliptable[(signed char)data];
}
/* returns 0 on timeout, timeout is in bytes */
static unsigned char poll_busy(long timeout)
{
long i;
unsigned char data, dummy;
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
/* get data response */
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = fliptable[(signed char)(RDR1)]; /* read byte */
/* wait until the card is ready again */
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
dummy = RDR1; /* read byte */
} while ((dummy != 0xFF) && (++i < timeout));
return (dummy == 0xFF) ? data : 0;
}
/* Send MMC command and get response */
static int send_cmd(int cmd, unsigned long parameter, unsigned char *response)
{
unsigned char command[] = {0x40, 0x00, 0x00, 0x00, 0x00, 0x95, 0xFF};
command[0] = cmd;
if (parameter != 0)
{
command[1] = (parameter >> 24) & 0xFF;
command[2] = (parameter >> 16) & 0xFF;
command[3] = (parameter >> 8) & 0xFF;
command[4] = parameter & 0xFF;
}
write_transfer(command, 7);
response[0] = poll_byte(20);
if (response[0] != 0x00)
{
write_transfer(dummy, 1);
return -1;
}
switch (cmd)
{
case CMD_SEND_CSD: /* R1 response, leave open */
case CMD_SEND_CID:
case CMD_READ_SINGLE_BLOCK:
case CMD_READ_MULTIPLE_BLOCK:
break;
case CMD_SEND_STATUS: /* R2 response, close with dummy */
read_transfer(response + 1, 1);
write_transfer(dummy, 1);
break;
case CMD_READ_OCR: /* R3 response, close with dummy */
read_transfer(response + 1, 4);
write_transfer(dummy, 1);
break;
default: /* R1 response, close with dummy */
write_transfer(dummy, 1);
break; /* also catches block writes */
}
return 0;
}
/* Receive CID/ CSD data (16 bytes) */
static int receive_cxd(unsigned char *buf)
{
if (poll_byte(20) != DT_START_BLOCK)
{
write_transfer(dummy, 1);
return -1; /* not start of data */
}
read_transfer(buf, 16);
write_transfer(dummy, 3); /* 2 bytes dontcare crc + 1 byte trailer */
return 0;
}
/* helper function to extract n (<=32) bits from an arbitrary position.
counting from MSB to LSB */
unsigned long mmc_extract_bits(
const unsigned long *p, /* the start of the bitfield array */
unsigned int start, /* bit no. to start reading */
unsigned int size) /* how many bits to read */
{
unsigned int long_index = start / 32;
unsigned int bit_index = start % 32;
unsigned long result;
result = p[long_index] << bit_index;
if (bit_index + size > 32) /* crossing longword boundary */
result |= p[long_index+1] >> (32 - bit_index);
result >>= 32 - size;
return result;
}
static int initialize_card(int card_no)
{
int rc, i, temp;
unsigned char response[5];
tCardInfo *card = &card_info[card_no];
static const char mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80
};
static const int exponent[] = { /* use varies */
1, 10, 100, 1000, 10000, 100000, 1000000,
10000000, 100000000, 1000000000
};
/* switch to SPI mode */
send_cmd(CMD_GO_IDLE_STATE, 0, response);
if (response[0] != 0x01)
return -1; /* error response */
/* initialize card */
for (i = 0; i < 100; i++) /* timeout 1 sec */
{
sleep(1);
if (send_cmd(CMD_SEND_OP_COND, 0, response) == 0)
break;
}
if (response[0] != 0x00)
return -2; /* not ready */
/* get OCR register */
rc = send_cmd(CMD_READ_OCR, 0, response);
if (rc)
return rc * 10 - 3;
card->ocr = (response[1] << 24) | (response[2] << 16)
| (response[3] << 8) | response[4];
/* check voltage */
if (!(card->ocr & 0x00100000)) /* 3.2 .. 3.3 V */
return -4;
/* get CSD register */
rc = send_cmd(CMD_SEND_CSD, 0, response);
if (rc)
return rc * 10 - 5;
rc = receive_cxd((unsigned char*)card->csd);
if (rc)
return rc * 10 - 6;
/* check block sizes */
card->block_exp = mmc_extract_bits(card->csd, 44, 4);
card->blocksize = 1 << card->block_exp;
if ((mmc_extract_bits(card->csd, 102, 4) != card->block_exp)
|| card->blocksize > MAX_BLOCK_SIZE)
{
return -7;
}
if (card->blocksize != SECTOR_SIZE)
{
rc = send_cmd(CMD_SET_BLOCKLEN, card->blocksize, response);
if (rc)
return rc * 10 - 8;
}
/* max transmission speed, clock divider */
temp = mmc_extract_bits(card->csd, 29, 3);
temp = (temp > 3) ? 3 : temp;
card->speed = mantissa[mmc_extract_bits(card->csd, 25, 4)]
* exponent[temp + 4];
card->bitrate_register = (FREQ/4-1) / card->speed;
/* NSAC, TSAC, read timeout */
card->nsac = 100 * mmc_extract_bits(card->csd, 16, 8);
card->tsac = mantissa[mmc_extract_bits(card->csd, 9, 4)];
temp = mmc_extract_bits(card->csd, 13, 3);
card->read_timeout = ((FREQ/4) / (card->bitrate_register + 1)
* card->tsac / exponent[9 - temp]
+ (10 * card->nsac));
card->read_timeout /= 8; /* clocks -> bytes */
card->tsac = card->tsac * exponent[temp] / 10;
/* r2w_factor, write timeout */
card->r2w_factor = 1 << mmc_extract_bits(card->csd, 99, 3);
if (card->r2w_factor > 32) /* dirty MMC spec violation */
{
card->read_timeout *= 4; /* add safety factor */
card->write_timeout = card->read_timeout * 8;
}
else
card->write_timeout = card->read_timeout * card->r2w_factor;
/* card size */
card->numblocks = (mmc_extract_bits(card->csd, 54, 12) + 1)
* (1 << (mmc_extract_bits(card->csd, 78, 3) + 2));
card->size = card->numblocks * card->blocksize;
/* switch to full speed */
setup_sci1(card->bitrate_register);
/* get CID register */
rc = send_cmd(CMD_SEND_CID, 0, response);
if (rc)
return rc * 10 - 9;
rc = receive_cxd((unsigned char*)card->cid);
if (rc)
return rc * 10 - 9;
card->initialized = true;
return 0;
}
tCardInfo *mmc_card_info(int card_no)
{
tCardInfo *card = &card_info[card_no];
if (!card->initialized && ((card_no == 0) || mmc_detect()))
{
mutex_lock(&mmc_mutex);
select_card(card_no);
deselect_card();
mutex_unlock(&mmc_mutex);
}
return card;
}
/* copy and swap in the background. If destination is NULL, use the next
* block cache entry */
static void bg_copy_swap(void)
{
if (!bcs_len)
return;
if (!bcs_dest)
{
current_cache = (current_cache + 1) % NUMCACHES; /* next cache */
block_cache[current_cache].inuse = false;
bcs_dest = block_cache[current_cache].data + 2;
}
if (bcs_src)
{
memcpy(bcs_dest, bcs_src, bcs_len);
bcs_src += bcs_len;
}
bitswap(bcs_dest, bcs_len);
bcs_dest += bcs_len;
bcs_len = 0;
}
/* Receive one block with dma, possibly swapping the previously received
* block in the background */
static int receive_block(unsigned char *inbuf, int size, long timeout)
{
if (poll_byte(timeout) != DT_START_BLOCK)
{
write_transfer(dummy, 1);
return -1; /* not start of data */
}
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial */
SSR1 = 0; /* clear all flags */
/* setup DMA channel 2 */
CHCR2 = 0; /* disable */
SAR2 = RDR1_ADDR;
DAR2 = (unsigned long) inbuf;
DTCR2 = size;
CHCR2 = 0x4601; /* fixed source address, RXI1, enable */
DMAOR = 0x0001;
SCR1 = (SCI_RE|SCI_RIE); /* kick off DMA */
/* dma receives 2 bytes more than DTCR2, but the last 2 bytes are not
* stored. The first extra byte is available from RDR1 after the DMA ends,
* the second one is lost because of the SCI overrun. However, this
* behaviour conveniently discards the crc. */
bg_copy_swap();
yield(); /* be nice */
while (!(CHCR2 & 0x0002)); /* wait for end of DMA */
while (!(SSR1 & SCI_ORER)); /* wait for the trailing bytes */
SCR1 = 0;
serial_mode = SER_DISABLED;
write_transfer(dummy, 1); /* send trailer */
last_disk_activity = current_tick;
return 0;
}
/* Send one block with dma from the current block cache, possibly preparing
* the next block within the next block cache in the background. */
static int send_block(int size, unsigned char start_token, long timeout)
{
int rc = 0;
unsigned char *curbuf = block_cache[current_cache].data;
curbuf[1] = fliptable[(signed char)start_token];
*(unsigned short *)(curbuf + size + 2) = 0xFFFF;
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial */
SSR1 = 0; /* clear all flags */
/* setup DMA channel 2 */
CHCR2 = 0; /* disable */
SAR2 = (unsigned long)(curbuf + 1);
DAR2 = TDR1_ADDR;
DTCR2 = size + 3; /* start token + block + dummy crc */
CHCR2 = 0x1701; /* fixed dest. address, TXI1, enable */
DMAOR = 0x0001;
SCR1 = (SCI_TE|SCI_TIE); /* kick off DMA */
bg_copy_swap();
yield(); /* be nice */
while (!(CHCR2 & 0x0002)); /* wait for end of DMA */
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0;
serial_mode = SER_DISABLED;
if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */
rc = -1;
write_transfer(dummy, 1);
last_disk_activity = current_tick;
return rc;
}
static int cache_block(IF_MV2(int drive,) unsigned long blocknum,
int size, long timeout)
{
int rc, i;
unsigned char response;
/* check whether the block is already cached */
for (i = 0; i < NUMCACHES; i++)
{
if (block_cache[i].inuse && (block_cache[i].blocknum == blocknum)
#ifdef HAVE_MULTIVOLUME
&& (block_cache[i].drive == drive)
#endif
)
{
current_cache = i;
bg_copy_swap();
return 0;
}
}
/* not found: read the block */
current_cache = (current_cache + 1) % NUMCACHES;
rc = send_cmd(CMD_READ_SINGLE_BLOCK, blocknum * size, &response);
if (rc)
return rc * 10 - 1;
block_cache[current_cache].inuse = false;
rc = receive_block(block_cache[current_cache].data + 2, size, timeout);
if (rc)
return rc * 10 - 2;
#ifdef HAVE_MULTIVOLUME
block_cache[current_cache].drive = drive;
#endif
block_cache[current_cache].blocknum = blocknum;
block_cache[current_cache].inuse = true;
return 0;
}
int ata_read_sectors(IF_MV2(int drive,)
unsigned long start,
int incount,
void* inbuf)
{
int rc = 0;
unsigned int blocksize, offset;
unsigned long c_addr, c_end_addr;
unsigned long c_block, c_end_block;
unsigned char response;
tCardInfo *card;
c_addr = start * SECTOR_SIZE;
c_end_addr = c_addr + incount * SECTOR_SIZE;
mutex_lock(&mmc_mutex);
led(true);
#ifdef HAVE_MULTIVOLUME
card = &card_info[drive];
rc = select_card(drive);
#else
card = &card_info[current_card];
rc = select_card(current_card);
#endif
if (rc)
{
rc = rc * 10 - 1;
goto error;
}
if (c_end_addr > card->size)
{
rc = -2;
goto error;
}
blocksize = card->blocksize;
offset = c_addr & (blocksize - 1);
c_block = c_addr >> card->block_exp;
c_end_block = c_end_addr >> card->block_exp;
bcs_dest = inbuf;
if (offset) /* first partial block */
{
unsigned long len = MIN(c_end_addr - c_addr, blocksize - offset);
rc = cache_block(IF_MV2(drive,) c_block, blocksize,
card->read_timeout);
if (rc)
{
rc = rc * 10 - 3;
goto error;
}
bcs_src = block_cache[current_cache].data + 2 + offset;
bcs_len = len;
inbuf += len;
c_addr += len;
c_block++;
}
/* some cards don't like reading the very last block with
* CMD_READ_MULTIPLE_BLOCK, so make sure this block is always
* read with CMD_READ_SINGLE_BLOCK. Let the 'last partial block'
* read catch this. */
if (c_end_block == card->numblocks)
c_end_block--;
if (c_block < c_end_block)
{
int read_cmd = (c_end_block - c_block > 1) ?
CMD_READ_MULTIPLE_BLOCK : CMD_READ_SINGLE_BLOCK;
rc = send_cmd(read_cmd, c_addr, &response);
if (rc)
{
rc = rc * 10 - 4;
goto error;
}
while (c_block < c_end_block)
{
rc = receive_block(inbuf, blocksize, card->read_timeout);
if (rc)
{
rc = rc * 10 - 5;
goto error;
}
bcs_src = NULL;
bcs_len = blocksize;
inbuf += blocksize;
c_addr += blocksize;
c_block++;
}
if (read_cmd == CMD_READ_MULTIPLE_BLOCK)
{
rc = send_cmd(CMD_STOP_TRANSMISSION, 0, &response);
if (rc)
{
rc = rc * 10 - 6;
goto error;
}
}
}
if (c_addr < c_end_addr) /* last partial block */
{
rc = cache_block(IF_MV2(drive,) c_block, blocksize,
card->read_timeout);
if (rc)
{
rc = rc * 10 - 7;
goto error;
}
bcs_src = block_cache[current_cache].data + 2;
bcs_len = c_end_addr - c_addr;
}
bg_copy_swap();
error:
deselect_card();
led(false);
mutex_unlock(&mmc_mutex);
/* only flush if reading went ok */
if ( (rc == 0) && delayed_write )
ata_flush();
return rc;
}
int ata_write_sectors(IF_MV2(int drive,)
unsigned long start,
int count,
const void* buf)
{
int rc = 0;
unsigned int blocksize, offset;
unsigned long c_addr, c_end_addr;
unsigned long c_block, c_end_block;
unsigned char response;
tCardInfo *card;
if (start == 0)
panicf("Writing on sector 0\n");
c_addr = start * SECTOR_SIZE;
c_end_addr = c_addr + count * SECTOR_SIZE;
mutex_lock(&mmc_mutex);
led(true);
#ifdef HAVE_MULTIVOLUME
card = &card_info[drive];
rc = select_card(drive);
#else
card = &card_info[current_card];
rc = select_card(current_card);
#endif
if (rc)
{
rc = rc * 10 - 1;
goto error;
}
if (c_end_addr > card->size)
panicf("Writing past end of card\n");
blocksize = card->blocksize;
offset = c_addr & (blocksize - 1);
c_block = c_addr >> card->block_exp;
c_end_block = c_end_addr >> card->block_exp;
bcs_src = buf;
/* Special case: first block is trimmed at both ends. May only happen
* if (blocksize > 2 * sectorsize), i.e. blocksize == 2048 */
if ((c_block == c_end_block) && offset)
c_end_block++;
if (c_block < c_end_block)
{
int write_cmd;
unsigned char start_token;
if (c_end_block - c_block > 1)
{
write_cmd = CMD_WRITE_MULTIPLE_BLOCK;
start_token = DT_START_WRITE_MULTIPLE;
}
else
{
write_cmd = CMD_WRITE_BLOCK;
start_token = DT_START_BLOCK;
}
if (offset)
{
unsigned long len = MIN(c_end_addr - c_addr, blocksize - offset);
rc = cache_block(IF_MV2(drive,) c_block, blocksize,
card->read_timeout);
if (rc)
{
rc = rc * 10 - 2;
goto error;
}
bcs_dest = block_cache[current_cache].data + 2 + offset;
bcs_len = len;
c_addr -= offset;
}
else
{
bcs_dest = NULL; /* next block cache */
bcs_len = blocksize;
}
bg_copy_swap();
rc = send_cmd(write_cmd, c_addr, &response);
if (rc)
{
rc = rc * 10 - 3;
goto error;
}
c_block++; /* early increment to simplify the loop */
while (c_block < c_end_block)
{
bcs_dest = NULL; /* next block cache */
bcs_len = blocksize;
rc = send_block(blocksize, start_token, card->write_timeout);
if (rc)
{
rc = rc * 10 - 4;
goto error;
}
c_addr += blocksize;
c_block++;
}
rc = send_block(blocksize, start_token, card->write_timeout);
if (rc)
{
rc = rc * 10 - 5;
goto error;
}
c_addr += blocksize;
/* c_block++ was done early */
if (write_cmd == CMD_WRITE_MULTIPLE_BLOCK)
{
response = DT_STOP_TRAN;
write_transfer(&response, 1);
poll_busy(card->write_timeout);
}
}
if (c_addr < c_end_addr) /* last partial block */
{
rc = cache_block(IF_MV2(drive,) c_block, blocksize,
card->read_timeout);
if (rc)
{
rc = rc * 10 - 6;
goto error;
}
bcs_dest = block_cache[current_cache].data + 2;
bcs_len = c_end_addr - c_addr;
bg_copy_swap();
rc = send_cmd(CMD_WRITE_BLOCK, c_addr, &response);
if (rc)
{
rc = rc * 10 - 7;
goto error;
}
rc = send_block(blocksize, DT_START_BLOCK, card->write_timeout);
if (rc)
{
rc = rc * 10 - 8;
goto error;
}
}
error:
deselect_card();
led(false);
mutex_unlock(&mmc_mutex);
/* only flush if writing went ok */
if ( (rc == 0) && delayed_write )
ata_flush();
return rc;
}
/* While there is no spinup, the delayed write is still here to avoid
wearing the flash unnecessarily */
extern void ata_delayed_write(unsigned long sector, const void* buf)
{
memcpy(delayed_sector, buf, SECTOR_SIZE);
delayed_sector_num = sector;
delayed_write = true;
}
/* write the delayed sector to volume 0 */
extern void ata_flush(void)
{
if ( delayed_write )
{
DEBUGF("ata_flush()\n");
delayed_write = false;
ata_write_sectors(IF_MV2(0,) delayed_sector_num, 1, delayed_sector);
}
}
void ata_spindown(int seconds)
{
(void)seconds;
}
bool ata_disk_is_active(void)
{
/* this is correct unless early return from write gets implemented */
return mmc_mutex.locked;
}
int ata_standby(int time)
{
(void)time;
return 0;
}
int ata_sleep(void)
{
return 0;
}
void ata_spin(void)
{
}
#ifdef HAVE_HOTSWAP
static void mmc_thread(void)
{
struct event ev;
while (1) {
queue_wait(&mmc_queue, &ev);
switch ( ev.id )
{
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&mmc_queue);
break;
case SYS_MMC_INSERTED:
disk_mount(1); /* mount MMC */
queue_broadcast(SYS_FS_CHANGED, NULL);
break;
case SYS_MMC_EXTRACTED:
disk_unmount(1); /* release "by force" */
queue_broadcast(SYS_FS_CHANGED, NULL);
break;
}
}
}
#endif /* #ifdef HAVE_HOTSWAP */
bool mmc_detect(void)
{
return adc_read(ADC_MMC_SWITCH) < 0x200 ? true : false;
}
bool mmc_usb_active(int delayticks)
{
/* reading "inactive" is delayed by user-supplied monoflop value */
return (usb_activity ||
TIME_BEFORE(current_tick, last_usb_activity + delayticks));
}
static void mmc_tick(void)
{
bool current_status;
if (new_mmc_circuit)
/* USB bridge activity is 0 on idle, ~527 on active */
current_status = adc_read(ADC_USB_ACTIVE) > 0x100;
else
current_status = adc_read(ADC_USB_ACTIVE) < 0x190;
if (!current_status && usb_activity)
last_usb_activity = current_tick;
usb_activity = current_status;
current_status = mmc_detect();
/* Only report when the status has changed */
if (current_status != last_mmc_status)
{
last_mmc_status = current_status;
countdown = 30;
}
else
{
/* Count down until it gets negative */
if (countdown >= 0)
countdown--;
if (countdown == 0)
{
if (current_status)
{
queue_broadcast(SYS_MMC_INSERTED, NULL);
}
else
{
queue_broadcast(SYS_MMC_EXTRACTED, NULL);
card_info[1].initialized = false;
}
}
}
}
int ata_soft_reset(void)
{
return 0;
}
void ata_enable(bool on)
{
PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIOs, if not modified below */
PACR2 &= ~0x4000; /* use PA7 (bridge reset) as GPIO */
if (on)
{
PBCR1 |= 0x08A0; /* as SCK1, TxD1, RxD1 */
IPRE &= 0x0FFF; /* disable SCI1 interrupts for the CPU */
}
and_b(~0x80, &PADRL); /* assert reset */
sleep(HZ/20);
or_b(0x80, &PADRL); /* de-assert reset */
sleep(HZ/20);
card_info[0].initialized = false;
card_info[1].initialized = false;
}
int ata_init(void)
{
int rc = 0;
mutex_init(&mmc_mutex);
led(false);
/* Port setup */
PACR1 &= ~0x0F00; /* GPIO function for PA12, /IRQ1 for PA13 */
PACR1 |= 0x0400;
PADR |= 0x0680; /* set all the selects + reset high (=inactive) */
PAIOR |= 0x1680; /* make outputs for them and the PA12 clock gate */
PBDR |= 0x2C00; /* SCK1, TxD1 and RxD1 high when GPIO CHECKME: mask */
PBIOR |= 0x2000; /* SCK1 output */
PBIOR &= ~0x0C00; /* TxD1, RxD1 input */
last_mmc_status = mmc_detect();
#ifndef HAVE_MULTIVOLUME
if (last_mmc_status)
{ /* MMC inserted */
current_card = 1;
}
else
{ /* no MMC, use internal memory */
current_card = 0;
}
#endif
ata_enable(true);
if ( !initialized )
{
new_mmc_circuit = ((read_hw_mask() & MMC_CLOCK_POLARITY) != 0);
#ifdef HAVE_HOTSWAP
queue_init(&mmc_queue);
create_thread(mmc_thread, mmc_stack,
sizeof(mmc_stack), mmc_thread_name);
#endif
tick_add_task(mmc_tick);
initialized = true;
}
return rc;
}