rockbox/apps/codecs/libgme/gb_apu.c

411 lines
10 KiB
C
Raw Normal View History

// Gb_Snd_Emu 0.1.4. http://www.slack.net/~ant/
#include "gb_apu.h"
//#include "gb_apu_logger.h"
/* Copyright (C) 2003-2008 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const vol_reg = 0xFF24;
int const stereo_reg = 0xFF25;
int const status_reg = 0xFF26;
int const wave_ram = 0xFF30;
int const power_mask = 0x80;
static inline int calc_output( struct Gb_Apu* this, int osc )
{
int bits = this->regs [stereo_reg - io_addr] >> osc;
return (bits >> 3 & 2) | (bits & 1);
}
void Apu_set_output( struct Gb_Apu* this, int i, struct Blip_Buffer* center, struct Blip_Buffer* left, struct Blip_Buffer* right )
{
// Must be silent (all NULL), mono (left and right NULL), or stereo (none NULL)
require( !center || (center && !left && !right) || (center && left && right) );
require( (unsigned) i < osc_count ); // fails if you pass invalid osc index
if ( !center || !left || !right )
{
left = center;
right = center;
}
struct Gb_Osc* o = this->oscs [i];
o->outputs [1] = right;
o->outputs [2] = left;
o->outputs [3] = center;
o->output = o->outputs [calc_output( this, i )];
}
static void synth_volume( struct Gb_Apu* this, int iv )
{
int v = (this->volume_ * 6) / 10 / osc_count / 15 /*steps*/ / 8 /*master vol range*/ * iv;
Synth_volume( &this->synth, v );
}
static void apply_volume( struct Gb_Apu* this )
{
// TODO: Doesn't handle differing left and right volumes (panning).
// Not worth the complexity.
int data = this->regs [vol_reg - io_addr];
int left = data >> 4 & 7;
int right = data & 7;
//if ( data & 0x88 ) dprintf( "Vin: %02X\n", data & 0x88 );
//if ( left != right ) dprintf( "l: %d r: %d\n", left, right );
synth_volume( this, max( left, right ) + 1 );
}
void Apu_volume( struct Gb_Apu* this, int v )
{
if ( this->volume_ != v )
{
this->volume_ = v;
apply_volume( this );
}
}
static void reset_regs( struct Gb_Apu* this )
{
int i;
for ( i = 0; i < 0x20; i++ )
this->regs [i] = 0;
Sweep_reset ( &this->square1 );
Square_reset( &this->square2 );
Wave_reset ( &this->wave );
Noise_reset ( &this->noise );
apply_volume( this );
}
static void reset_lengths( struct Gb_Apu* this )
{
this->square1.osc.length_ctr = 64;
this->square2.osc.length_ctr = 64;
this->wave .osc.length_ctr = 256;
this->noise .osc.length_ctr = 64;
}
void Apu_reduce_clicks( struct Gb_Apu* this, bool reduce )
{
this->reduce_clicks_ = reduce;
// Click reduction makes DAC off generate same output as volume 0
int dac_off_amp = 0;
if ( reduce && this->wave.osc.mode != mode_agb ) // AGB already eliminates clicks
dac_off_amp = -dac_bias;
int i;
for ( i = 0; i < osc_count; i++ )
this->oscs [i]->dac_off_amp = dac_off_amp;
// AGB always eliminates clicks on wave channel using same method
if ( this->wave.osc.mode == mode_agb )
this->wave.osc.dac_off_amp = -dac_bias;
}
void Apu_reset( struct Gb_Apu* this, enum gb_mode_t mode, bool agb_wave )
{
// Hardware mode
if ( agb_wave )
mode = mode_agb; // using AGB wave features implies AGB hardware
this->wave.agb_mask = agb_wave ? 0xFF : 0;
int i;
for ( i = 0; i < osc_count; i++ )
this->oscs [i]->mode = mode;
Apu_reduce_clicks( this, this->reduce_clicks_ );
// Reset state
this->frame_time = 0;
this->last_time = 0;
this->frame_phase = 0;
reset_regs( this );
reset_lengths( this );
// Load initial wave RAM
static byte const initial_wave [2] [16] = {
{0x84,0x40,0x43,0xAA,0x2D,0x78,0x92,0x3C,0x60,0x59,0x59,0xB0,0x34,0xB8,0x2E,0xDA},
{0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF},
};
int b;
for ( b = 2; --b >= 0; )
{
// Init both banks (does nothing if not in AGB mode)
// TODO: verify that this works
Apu_write_register( this, 0, 0xFF1A, b * 0x40 );
unsigned i;
for ( i = 0; i < sizeof initial_wave [0]; i++ )
Apu_write_register( this, 0, i + wave_ram, initial_wave [(mode != mode_dmg)] [i] );
}
}
void Apu_set_tempo( struct Gb_Apu* this, int t )
{
this->frame_period = 4194304 / 512; // 512 Hz
if ( t != (int)FP_ONE_TEMPO )
this->frame_period = t ? (blip_time_t) ((this->frame_period * FP_ONE_TEMPO) / t) : (blip_time_t) (0);
}
void Apu_init( struct Gb_Apu* this )
{
this->wave.wave_ram = &this->regs [wave_ram - io_addr];
Synth_init( &this->synth );
this->oscs [0] = &this->square1.osc;
this->oscs [1] = &this->square2.osc;
this->oscs [2] = &this->wave.osc;
this->oscs [3] = &this->noise.osc;
int i;
for ( i = osc_count; --i >= 0; )
{
struct Gb_Osc* o = this->oscs [i];
o->regs = &this->regs [i * 5];
o->output = NULL;
o->outputs [0] = NULL;
o->outputs [1] = NULL;
o->outputs [2] = NULL;
o->outputs [3] = NULL;
o->synth = &this->synth;
}
this->reduce_clicks_ = false;
Apu_set_tempo( this, (int)FP_ONE_TEMPO );
this->volume_ = (int)FP_ONE_VOLUME;
Apu_reset( this, mode_cgb, false );
}
static void run_until_( struct Gb_Apu* this, blip_time_t end_time )
{
if ( !this->frame_period )
this->frame_time += end_time - this->last_time;
while ( true )
{
// run oscillators
blip_time_t time = end_time;
if ( time > this->frame_time )
time = this->frame_time;
Square_run( &this->square1, this->last_time, time );
Square_run( &this->square2, this->last_time, time );
Wave_run ( &this->wave, this->last_time, time );
Noise_run ( &this->noise, this->last_time, time );
this->last_time = time;
if ( time == end_time )
break;
// run frame sequencer
assert( this->frame_period );
this->frame_time += this->frame_period * clk_mul;
switch ( this->frame_phase++ )
{
case 2:
case 6:
// 128 Hz
clock_sweep( &this->square1 );
case 0:
case 4:
// 256 Hz
Osc_clock_length( &this->square1.osc );
Osc_clock_length( &this->square2.osc);
Osc_clock_length( &this->wave.osc);
Osc_clock_length( &this->noise.osc);
break;
case 7:
// 64 Hz
this->frame_phase = 0;
Square_clock_envelope( &this->square1 );
Square_clock_envelope( &this->square2 );
Noise_clock_envelope( &this->noise );
}
}
}
static inline void run_until( struct Gb_Apu* this, blip_time_t time )
{
require( time >= this->last_time ); // end_time must not be before previous time
if ( time > this->last_time )
run_until_( this, time );
}
void Apu_end_frame( struct Gb_Apu* this, blip_time_t end_time )
{
#ifdef LOG_FRAME
LOG_FRAME( end_time );
#endif
if ( end_time > this->last_time )
run_until( this, end_time );
this->frame_time -= end_time;
assert( this->frame_time >= 0 );
this->last_time -= end_time;
assert( this->last_time >= 0 );
}
static void silence_osc( struct Gb_Apu* this, struct Gb_Osc* o )
{
int delta = -o->last_amp;
if ( this->reduce_clicks_ )
delta += o->dac_off_amp;
if ( delta )
{
o->last_amp = o->dac_off_amp;
if ( o->output )
{
Blip_set_modified( o->output );
Synth_offset( &this->synth, this->last_time, delta, o->output );
}
}
}
static void apply_stereo( struct Gb_Apu* this )
{
int i;
for ( i = osc_count; --i >= 0; )
{
struct Gb_Osc* o = this->oscs [i];
struct Blip_Buffer* out = o->outputs [calc_output( this, i )];
if ( o->output != out )
{
silence_osc( this, o );
o->output = out;
}
}
}
void Apu_write_register( struct Gb_Apu* this, blip_time_t time, int addr, int data )
{
require( (unsigned) data < 0x100 );
int reg = addr - io_addr;
if ( (unsigned) reg >= io_size )
{
require( false );
return;
}
#ifdef LOG_WRITE
LOG_WRITE( time, addr, data );
#endif
if ( addr < status_reg && !(this->regs [status_reg - io_addr] & power_mask) )
{
// Power is off
// length counters can only be written in DMG mode
if ( this->wave.osc.mode != mode_dmg || (reg != 1 && reg != 5+1 && reg != 10+1 && reg != 15+1) )
return;
if ( reg < 10 )
data &= 0x3F; // clear square duty
}
run_until( this, time );
if ( addr >= wave_ram )
{
Wave_write( &this->wave, addr, data );
}
else
{
int old_data = this->regs [reg];
this->regs [reg] = data;
if ( addr < vol_reg )
{
// Oscillator
write_osc( this, reg, old_data, data );
}
else if ( addr == vol_reg && data != old_data )
{
// Master volume
int i;
for ( i = osc_count; --i >= 0; )
silence_osc( this, this->oscs [i] );
apply_volume( this );
}
else if ( addr == stereo_reg )
{
// Stereo panning
apply_stereo( this );
}
else if ( addr == status_reg && (data ^ old_data) & power_mask )
{
// Power control
this->frame_phase = 0;
int i;
for ( i = osc_count; --i >= 0; )
silence_osc( this, this->oscs [i] );
reset_regs( this );
if ( this->wave.osc.mode != mode_dmg )
reset_lengths( this );
this->regs [status_reg - io_addr] = data;
}
}
}
int Apu_read_register( struct Gb_Apu* this, blip_time_t time, int addr )
{
if ( addr >= status_reg )
run_until( this, time );
int reg = addr - io_addr;
if ( (unsigned) reg >= io_size )
{
require( false );
return 0;
}
if ( addr >= wave_ram )
return Wave_read( &this->wave, addr );
// Value read back has some bits always set
static byte const masks [] = {
0x80,0x3F,0x00,0xFF,0xBF,
0xFF,0x3F,0x00,0xFF,0xBF,
0x7F,0xFF,0x9F,0xFF,0xBF,
0xFF,0xFF,0x00,0x00,0xBF,
0x00,0x00,0x70,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
};
int mask = masks [reg];
if ( this->wave.agb_mask && (reg == 10 || reg == 12) )
mask = 0x1F; // extra implemented bits in wave regs on AGB
int data = this->regs [reg] | mask;
// Status register
if ( addr == status_reg )
{
data &= 0xF0;
data |= (int) this->square1.osc.enabled << 0;
data |= (int) this->square2.osc.enabled << 1;
data |= (int) this->wave .osc.enabled << 2;
data |= (int) this->noise .osc.enabled << 3;
}
return data;
}